Влияние карбоксиметилированной древесины на развитие плодов и луковиц культурных растений в черте города

Автор работы: Пользователь скрыл имя, 17 Сентября 2011 в 10:49, научная работа

Описание

Целью данной работы является изучение влияния карбоксиметилированой древесины на развитие плодов и луковиц культурных растений в черте города и оценить возможность использования ее в качестве нового стимулятора роста растений.
Для достижения поставленной цели были поставлены и решались следующие задачи:
o исследовать эффективность применения КМД в качестве стимулятора роста для некоторых видов культур: баклажаны, помидоры, болгарский перец, цветная капуста и репчатый лук;
o установить сроки созревания и устойчивость к различным болезням и вредителям;
o приблизительно оценить экономический эффект(на 1 ар).

Содержание

Введение 3
1 Стимуляторы роста 4
1.1 Классификация стимуляторов роста 4
1.2 Ауксины 5
1.2.1 История открытия ауксинов 5
1.2.2 Физиологические эффекты ауксинов 9
1.3 Гиббереллины 15
1.3.1 История открытия гиббереллинов 15
1.3.2 Основные физиологические эффекты гиббереллинов 16
1.3.3 Биосинтез гиббереллинов 18
1.4 Цитокинины 20
1.4.1 История открытия цитокининов 20
1.4.2 Эффекты цитокининов от апекса корня до апекса побега 21
1.5 Химический состав древесины 24
1.5.1 Целлюлоза 26
1.5.2 Гемицеллюлозы 27
1.5.3 Лигнин 28
1.6 Методы получения карбоксиметилированной древесины 31
2 Исследования применения карбоксиметилированной древесины в качестве стимулятора роста растений 32
2.1 Получение карбоксиметилированной древесины 32
2.2 Описание эксперимента 32
3 Влияние КМД на развитие плодов и луковиц растений 34
4 Выводы 37
Заключение 38
Список использованной литературы 39
Приложение А. Сравнительные характеристики образцов некоторых
культур 40
Приложение Б. Фотографии образцов репчатого лука 42

Работа состоит из  1 файл

Шаг в будущее.doc

— 392.50 Кб (Скачать документ)

       Ауксины – гормоны, вырабатываемые в апикальных меристемах побегов. Для растения в целом ауксиновый сигнал означает, что побег интенсивно растет и необходимо обеспечивать его потребности, и каждая клетка растения в зависимости от своего положения выполняет эту задачу.

       Образно ауксин можно назвать «гормоном благополучия апекса побега» [4].

       1). Самый первый эффект ауксинов – аттрагирующий (от лат. attractio – привлечение). Клетки меристемы «привлекают» к себе питательные вещества. Аттрагирующий механизм ауксинов не установлен, но наиболее вероятным представляется следующий сценарий событий. Способность клетки к поглощению многих веществ зависит от электрохимического потенциала на мембране. Так, сахароза проникает в клетку через мембрану вместе с ионом Н+, и чем выше концентрация протонов снаружи от клетки (и чем ниже она внутри), тем больше сахарозы клетка может захватить. Активизация работы Н+-помпы идет на усиление трансмембранного транспорта веществ. Таким образом, клетки, нуждающиеся в питательных веществах, создают более сильный перепад концентраций протонов на мембране, увеличивающий их поглотительную способность. Кроме сахарозы, клетки апикальной меристемы аттрагируют аминокислоты, нуклеотиды, неорганические ионы, воду и другие вещества. Аттрагирующий эффект проявляется в зоне активных делений клеток.

       Совместно с цитокининами ауксины вызывают деления клеток, которые также происходят в определенных клетках апекса побега.

       2). В лежащей ниже зоне ауксин вызывает растяжение клеток. Механизм растяжения также активизируется через Н+-помпу. Клеточная стенка – очень прочное экстрацеллюлярное образование. В общих словах при растяжении происходит снижение прочности клеточной стенки, силы тургорного и осмотического давления приходят в дисбаланс. Протопласт, не сдерживаемый клеточной стенкой, поглощает воду, образует, крупные вакуоли и за счет этого объем протопласта увеличивается, а клеточная стенка растягивается. Активный перенос ионов Н+ из цитоплазмы в матрикс клеточной стенки приводит к так называемому «кислому росту» и растяжению клетки.

       С растяжением клеток в субапикальном  районе связаны более сложные  явления – тропизмы. Главная задача растягивающихся клеток – правильно ориентировать растущую верхушку побега в пространстве. При боковом освещении ауксины перераспределяются на теневую сторону, вызывая неравномерное растяжение и наклон в сторону света. Это явление называют фототропизмом (или, что-то же самое, гелиотропизмом). Если побег изменил положение в пространстве (наклонился, повален ветром и т.д.), то ауксины перераспределяются на физически нижнюю сторону. Субапикальная зона изгиба стремится вновь направить рост по вертикали. Это явление получило название гравитропизма (или геотропизма). Обычно для побегов характерен отрицательный геотропизм – побег растет по направлению от центра Земли. Корни обладают положительным геотропизмом (к центру Земли).

       Кроме того, иногда наблюдается диагеотропный (плагиотропный) рост – перпендикулярно силе тяжести. В качестве примера можно привести рост боковых ветвей ели, подземных корневищ многих растений.

       У некоторых растений имеется тигмотропизм (ростовое движение в сторону прикосновения). Это особенно важно для вьющихся лиан, которым необходима опора для роста (вьюнок, фасоль, ипомея, горец вьюнковый, повилика и др.).

       3). Ниже зоны растяжения начинается дифференцировка. Клетки проводящей системы и механических тканей приобретают жесткие клеточные стенки, за счет лигнификации.

       После лигнификации клетки теряют способность  к растяжению. Более того, если окружающие клетки начнут растягиваться, это может  привести к разрыву проводящих сосудов, восстановить которые невозможно. Все  это объясняет, почему после полной дифференцировки сосудов изменение направления роста невозможно.

       Ауксин  важен для регуляции процессов, происходящих в зоне дифференцировки. Его потоками определяется положение  будущих пучков проводящей ткани. Под  действием ауксина формируются  проводящие пучки (преимущественно ксилема), поскольку стеблю необходим приток питательных веществ от корня. На этот процесс помимо ауксина влияет концентрация сахарозы. В опытах с каллусной культурой in vitro при низких концентрациях сахарозы (менее 2 %) на фоне ауксина формируется ксилема, а при высоких – флоэма.

       Ауксин  влияет на расположение листьев на растении. Каждый молодой лист, пока он растет, служит источником ауксинов. В апикальной меристеме побегов возникают зоны, которые станут примордиями листьев. В них более активен синтез ауксина. Для окружающих клеток это значит, что место занято, закладывать новый лист рядом уже нельзя. Если нарушить транспорт ауксина из примордия листа в окружающие клетки (например, сделать надрез), то следующий лист закладывается у края надреза. Мутанты с нарушением транспорта ауксина (pin), образуют листья в беспорядке, часто несколько соседних примордиев сливаются воедино, образуя уродливые органы. Нарушаются все ярусы листьев, начиная от семядольных (число которых может доходить до 6 при норме 2) заканчивая органами цветка. Аналогичный эффект можно вызвать добавляя ингибиторы транспорта ауксинов (ТИБК, НФК и др.).

       Как и меристема побега, меристема листа «привлекает» к себе питательные вещества, обеспечивает себя правильной сетью жилок. Направление закладки сосудистых элементов в листьях также находится под контролем ауксинов, и рассогласуется при нарушениях транспорта ауксина. Сходство в регуляции процессов растущим побегом и растущим листом, по-видимому, не случайно. Существует гипотеза об эволюционном происхождении листа из бокового побега, который утратил неограниченный рост и стал плоским для выполнения функции фотосинтеза.

       4). В пазухах листьев создаются благоприятные условия для закладки и развития боковых побегов (почек). Однако у большинства растений боковые побеги не развиваются пока главный побег активно растет. Подавление роста боковых почек в пользу апикальной меристемы получило название апикального доминирования. Роль ауксинов в апикальном доминировании можно показать экспериментально.

       Если  удалить верхушку побега, рост боковых побегов активизируется. Однако достаточно наложить на срез агаровый блок с ауксином, боковые почки так и не пробудятся. Растение воспринимает агар с ауксином так же, как активно растущую верхушку побега, и считает новые побеги излишними. Дефицит ауксина, напротив, говорит растению о повреждении верхушки и необходимости ее чем-то заменить. При недостатке ауксинов в растении апикальное доминирование снимается, и боковые почки должны пойти в рост.

       Случаи  утраты верхушки побега в природе довольно часты. Это может быть как абиотическое повреждение (верхушку обломило ураганом, в нее попала молния или она погибла от заморозков), болезнь или нападение вредителей (насекомых, травоядных или человека). При утрате верхушки растение регенерирует побеговую систему за счет снятия апикального доминирования.

       Более интересны случаи снятия апикального  доминирования по «внутренним мотивам». Очень важным при этом является ориентация главного побега в пространстве. Различают два основных направления роста – вертикальное (или ортотропное) и в горизонтальной плоскости (или плагиотропное). Если главный побег ортотропный, он не дает образовывать новые вертикальные побеги. Это можно наблюдать на кофе, араукарии (или за их отсутствием – на ели) – у них единственный вертикальный ствол, который не мешает развивать многочисленные горизонтальные ветки. Стоит у этих растений отрезать ортотропный побег, как из пазух листьев вырастут замещающие вертикальные побеги.

       Главный побег может быть и горизонтальным (плагиотропным), тогда он доминирует над новыми плагиотропными побегами, но не мешает росту боковых вертикальных.

       Чтобы снять апикальное доминирование  не обязательно удалять верхушку, достаточно изменить ее направление  роста. Этим приемом часто пользуются садоводы в интенсивном плодоводстве. Если главный вертикальный побег яблони согнуть и подвязать к опоре в горизонтальном направлении, то довольно быстро на нем проснется боковая почка, которая продолжит вертикальный рост. Это же явление наблюдается у роз и шиповника, когда главный побег склоняется к земле под собственной тяжестью и, естественно, изменяет направление роста. Считается, что в зоне перегиба создается механическое напряжение, что приводит к усиленному синтезу этилена, замедлению транспорта ауксинов и к более интенсивному их окислению.

       С апикальным доминированием в горизонтальной плоскости можно привести аналогичные  примеры. Так, у растений, образующих горизонтальное подземное корневище, часто наблюдаются две фазы роста. Первая – летняя – рост в горизонтальном направлении. Верхушка плагиотропного побега не дает расти боковым горизонтальным корневищам. На следующей стадии – зимой – происходит «разворот» и почка на верхушке побега ориентируется вертикально. Весной из нее начнет развиваться вертикальный побег. Этот «разворот» позволяет снять апикальное доминирование с боковых почек на корневище, и начинают расти новые боковые горизонтальные звенья, которые питаются за счет вертикального надземного побега. В силу экстремальных обстоятельств «разворот» апикальной меристемы может случиться и раньше. Например, в случае утраты растением надземной части, когда корневищу приходится образовывать новые надземные побеги с листьями и цветками. Описанная форма роста характерна для зверобоя продырявленного, тысячелистника, некоторых кислиц, вербейника обыкновенного, купены, отчасти – картофеля и топинамбура.

       Цветение  – еще один фактор, снимающий апикальное доминирование. Если побег образует верхушечный цветок или соцветие, то ниже начинают расти боковые побеги.

       5). В зоне вторичного утолщения у большинства деревьев умеренных широт возникает кольцо активно делящихся клеток – камбий. Для работы камбия также необходим ауксин, который поступает в камбий через флоэму. Чем интенсивнее растет побег, тем сильнее утолщается нижележащая ось и наоборот. Для делений клеток необходимы одновременно ауксины и цитокинины, причем ауксин обеспечивает закладку преимущественно ксилемы.

       6). Ауксин влияет и на корневую систему. Поскольку большое количество ауксинов является сигналом о росте побегов, для обеспечения их роста растение должно образовать больше корней. Обработка ауксинами вызывает закладку придаточных корней на стебле и боковых корней на главном корне (ризогенез). Этим эффектом часто пользуются в сельском хозяйстве, обрабатывая трудноукореняемые черенки растворами ауксинов [4].

       1.3 Гиббереллины

       1.3.1 История открытия гиббереллинов

       В Японии распространено заболевание  риса, которое местные жители называют «баканоэ» – «бешеный рис», «дурные  проростки». Рассада пораженных болезнью растений опережает в росте здоровый рис, но колосья вырастают уродливыми и зерна не бывает. В 1926 г. японский ботаник Куросава выделил и описал возбудителя болезни – гриб Gibberella fujikuroi (сейчас этот гриб перенесли в род Fusarium). Вскоре выяснилось, что многие симптомы «бешеного риса» можно вызвать культуральной жидкостью, в которой рос гриб. Это значит, что гриб выделяет некоторое растворимое в воде вещество, усиливающее рост риса. По родовому названию гриба вещество было названо гиббереллином.

       В 1930 г. японские химики выделили гиббереллин в кристаллическом виде и предложили структурную формулу. Но эту работу прервала война и до 1950 г. о гиббереллине почти никто не знал. Исследования возобновили несколько групп исследователей в Англии и США, и к 1955 г. структура первого из гиббереллинов была окончательно установлена.

       Обнаружилось, что растения и сами способны вырабатывать похожие вещества, за которыми сохранилось  название гиббереллинов. Это – самый  обширный класс растительных гормонов, на сегодня их известно более 100. Поскольку большинство из гиббереллинов – кислоты, их принято обозначать как ГК (гибберелловая кислота) с соответствующим индексом. Например: ГК24, ГК53 и т.д. Наиболее часто в экспериментах используют ГК3.

       1.3.2 Основные физиологические эффекты гиббереллинов

       Образно гиббереллины можно назвать «гормонами благополучия зеленого листа» [4].

       Гиббереллины  вырабатываются в основном в фотосинтезирующих  листьях (однако, могут синтезироваться  и в корнях). Действуют гиббереллины, прежде всего на интеркалярные меристемы, расположенные в непосредственной близости от узлов, к которым прикреплены листья.

       Наиболее  яркий эффект наблюдается при  обработке гиббереллинами интеркалярных  меристем злаков: растения сильно вытягиваются, механическая прочность соломины понижается и стебель полегает. Кроме того, при действии гиббереллинов у риса и кукурузы не может образоваться фертильная пыльца. Именно поэтому при болезни баканоэ рис практически не давал урожая.

       Если  пронаблюдать за ростом ветки яблони, липы или других деревьев, выяснится, что апикальная меристема активна только во второй половине лета, когда закладываются почки с листьями и цветками на следующий сезон. Часто апикальная меристема останавливает рост в еще закрытой почке. Рост ветки начинается весной: почка набухает и из нее образуется длинный побег. Весенний рост целиком происходит за счет интеркалярных меристем.

       Почки растений не одинаковы. Так, почки каштана, тополя, яблони, березы покрыты почечными чешуями (или катафиллами). Эти чешуи – видоизмененные листья, которые не занимаются фотосинтезом. Междоузлия между почечными чешуями остаются короткими, и в основании побега остается так называемое почечное кольцо (близко расположенные рубцы от почечных чешуй). Затем начинаются фотосинтезирующие листья, и чем больше площадь листа, тем длиннее междоузлие под ним. Это означает, что крупный зеленый лист производит гиббереллина больше, чем меньший по площади, и подает более мощный сигнал в интеркалярную меристему. Клетки активнее делятся и растягиваются там, где больше гиббереллина, и междоузлие под крупным листом оказывается длиннее. Нефотосинтезирующие почечные чешуи практически не вырабатывают гиббереллина. Поэтому их незачем разделять в пространстве и нет необходимости создавать листовую мозаику. Интеркалярная меристема не работает, образуется почечное кольцо из сближенных рубцов от почечных чешуй.

Информация о работе Влияние карбоксиметилированной древесины на развитие плодов и луковиц культурных растений в черте города