Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита

Автор работы: Пользователь скрыл имя, 08 Апреля 2012 в 20:39, курсовая работа

Описание

Ионное состояние более выгодно, оно характеризуется более меньшей внутренней энергией. Это заметно при получение металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том , что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии.

Содержание

Введение…………………………………………………………………..……….3
1 Коррозия и защита металлов…………………………………………...………5
1.1 Определение и классификация коррозийных процессов…………..……5
2. Электрохимическая коррозия………………………………………………….9
2.1 Термодинамика электрохимической коррозии металлов………….…...10
2.2 Схема процесса электрохимической коррозии металлов………...…….12
2.3 Гомогенные и гетерогенные пути электрохимической коррозии……..13
2.4 Механизм электрохимической коррозии……………………………..…15
2.5 Скорость электрохимической коррозии……………………………...….18
2.6 Анодные процессы при электрохимической коррозии металлов……...24
2.6.1 Термодинамические основы…………………………………………24
2.6.2 Классификация анодных процессов………………………………...25
2.6.3 Причины анодного растворения металлов…………………….....25
2.6.4 Анодная пассивность металлов………………………………...…27
3. Защита металлов от коррозии………………………………………………..29
3.1 Катодная и протекторная защита…………………………………...……40
Заключение…………………………………………………...…………….……46
Список использованных источников и литературы……………………...…48

Работа состоит из  1 файл

Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита. .doc

— 778.00 Кб (Скачать документ)

     Далее идет рост защитного слоя, экранирующего поверхность, скорость анодного растворения резко понижается (DE). В точке Е, соответствующей потенциалу полной пассивации металл оказывается в пассивном состоянии. На участке EF (область пассивного состояния) скорость анодного процесса не зависит от потенциала, а определяется скоростью химического растворения защитной пленки.

     Ток соответствующий области пассивного состояния, называется током пассивного состояния (i ). Положительнее F возможна ( -потенциал перепассивации) новая  ветвь активного растворения с образованием катионов более высокой валентности. Если перепассивации не происходит (это зависит от металла и среды), то при достаточно положительном возможно выделение кислорода за счет окисления воды по реакциям:

  1. в кислых средах;
  2. в щелочных.

     При высоких положительных потенциалах возможен локализованный пробой оксидной пленки - металл начинает растворятся по типу питтинга (PP') называют потенциалом питтингообразования. Металл запассивированный в данной среде, может сохраняться в пассивном состоянии некоторое время в непассивирующей среде. Переходу металла в пассивное состояние способствуют некоторые легирующие элементы. Изменение плотности тока полной пассивации (i) никеля в 1Н HSO в зависимости от содержания хрома в сплаве. 
 
 
 
 
 
 
 
 
 

3. Защита металлов от коррозии 

     В соответствии с рассмотренными ранее  механизмами коррозию металлов можно  затормозить изменением потенциала металла, пассивацией металла, снижением концентрации окислителя, изоляцией поверхности металла от окислителя, изменением состава металла и др. При разработке методов защиты от коррозии используют указанные способы снижения скорости коррозии, которые меняются в зависимости от характера коррозии и условий ее протекания. Выбор способа определяется его эффективностью, а также экономической целесообразностью. Все методы защиты условно делятся на следующие группы: а) легирование металлов; б) защитные покрытия (металлические, неметаллические); в) электрохимическая защита; г) изменение свойств коррозионной среды; д) рациональное конструирование изделий.

     Легирование металлов - это эффективный (хотя и дорогой) метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты, вызывающие пассивность металла. В качестве таких компонентов применяют хром, никель, вольфрам и др.

     Широкое применение нашло легирование для  защиты от газовой коррозии. Введение некоторых добавок к сталям (титана, меди, хром и никеля) приводит к тому, что при коррозии образуются плотные продукты реакции, предохраняющие сплав от дальнейшей коррозия. При этом используют сплавы, обладающие жаростойкостью и жаропрочностью.

     Жаростойкость - стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность - свойство конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например, стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов, например, , и . Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4-9% хрома, молибденом или кремнием применяют, например, в парогенераторо- и турбостроении. Сплав содержащий 9 - 12% хрома, применяют для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т.п.

     Сплавы  Сr-А1-Fе обладают исключительно высокой жаростойкостью. Например, сплав, содержащий 30% Сr, 5% А1, 0,5% Si, устойчив на воздухе до 1300°С. Эти сплавы используют, в частности, в качестве материала дня изготовления спиралей и деталей нагревательных элементов печей сопротивления. К их недостаткам относятся низкая жаропрочность и склонность к хрупкости при комнатной температуре после продолжительного нагрева на воздухе, вызываемая в известной степени образованием нитридов алюминия. По этой причине положение спиралей в печах должно быть фиксировано, а для беспрепятственного термического расширения и сжатия спирали обычно гофрируют. Жаростойкость никеля еще больше повышается при добавлении хрома. Сплав, содержащий 20% Сr и 80% Ni, устойчив на воздухе до 1150 C. Этот сплав - один из лучших жаростойких и жаропрочных сплавов.

     Легирование также используется с целью снижения скорости электрохимической коррозии, особенно коррозии с выделением водорода. К коррозионно-стойким сплавам, например, относятся нержавеющие стали, в которых легирующими компонентами служат хром, никель и другие металлы.

     Защитные  покрытия – это слои, искусственно создаваемые на поверхности металлических изделий и сооружений для предохранения их от коррозии. Если наряду с защитой от коррозии покрытие служит также для декоративных целей, его называют защитно-декоративным. Выбор вида покрытия зависит от условий, в которых используется металл.

     Металлические покрытия. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их можно разделить на катодные и анодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. В качестве примеров катодных покрытий на стали можно привести Сu, Ni, Аl. При повреждении покрытия (или наличии пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрытия - катодом, на котором выделяется водород или поглощается кислород (рис.8, а). Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. Анодные покрытия имеют более отрицательный потенциал, чем потенциал основного металла. Примером анодного покрытия может служить цинк на стали. В этом случае основной металл будет катодом коррозионного элемента, поэтому он не корродирует (рис.6, б). Потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия. Так, покрытие стали оловом в растворе - катодное, а в растворе органических кислот - анодное.

     Для получения металлических защитных покрытий применяются различные способы: электрохимический (гальванические покрытия), погружение в расплавленный металл, металлизация, термодиффузионный и химический. Из расплава получают покрытие цинка (горячее цинкование) и олова (горячее лужение).  

     

     Рис.6. Схема коррозии железа в кислотном растворе в порах катодного (а) анодного (б) покрытий: 1 - раствор; 2 - покрытие; 3 - основной металл; 4 – пора. 

     Металлизация - способ получения металлических защитных покрытий на различных сооружениях (мосты, детали судов, большие баки и др.); при этом способе расплавленный металл с помощью струи сжатого воздуха наносится на защищаемую поверхность. Этим методом можно получать слои почти любой толщины и с хорошим сцеплением с основным металлом. К преимуществам этого способа относится возможность нанесения покрытия на собранные конструкции. Иногда для повышения коррозионной стойкости пор покрытия заполняют термопластичными смолами.

     При термодиффузионном способе нанесения  покрытия изделие помещают в смесь, содержащую порошок металла покрытия. При повышенной температуре происходит диффузия наносимого металла в основной металл.

     Иногда  покрытия наносят при реакциях в  газовой фазе. Например при пропускании газообразного над поверхностью стали при 1000 C образуется поверхностный сплав Сr-Fе, содержащий 30% Cr:

     Подобные  поверхностные сплавы железа с кремнием, содержащие до 19% Si, могут быть получены при взаимодействии железа c при 800-900°С.

     Термодиффузионный способ широко используется для получения жаростойких покрытий алюминием (алюмирование), кремнием (силицирование), хромом (хромирование), титаном (титанирование) и т.д. Жаростойкие покрытия позволяют сочетать высокую жаропрочность основного материала с высокой жаростойкостью поверхностного слоя.

     Химический  способ получения металлических  покрытий заключается в восстановлении соединений металла с помощью  гипофосфита, водорода, гидразина и  других восстановителей. Медное покрытие, например, получают восстановлением ионов формальдегидом:

     

     Неметаллические защитные покрытия. Они могут быть как неорганическими, так и органическими. Защитное действие этих покрытий сводится в основном к изоляции металла от окружающей среды. В качестве неорганических покрытий применяют неорганические эмали, оксиды металлов, соединения хрома, фосфора и др. К органическим относятся лакокрасочные покрытия, покрытия смолами, пластмассами, полимерными пленками, резиной.

     Эмалированию  подвергают черные и цветные металлы, которые используют при производстве аппаратуры в фармацевтической, химической, пищевой отраслях промышленности, при производстве изделий домашнего обихода.

     Эмалирование  также применяется для защиты от газовой коррозии. Неорганические эмали по своему составу являются силикатами, т.е. соединениями кремния. К основным недостаткам таких покрытий относятся хрупкость и растрескивание при тепловых и механических ударах.

     Некоторые защитные покрытия образуются непосредственно  на поверхности металла. Образование на поверхности металлических изделий защитных оксидных пленок в технике называют оксидированием. Некоторые процессы имеют специальные названия. Так, например, процессы нанесения на сталь оксидных пленок ( ) иногда называют воронением, электрохимическое оксидирование алюминия - анодированием. Оксидные покрытия на стали можно получить при высокотемпературном окислении на воздухе или погружением в горячие концентрированные растворы щелочей, содержащих персульфаты, нитраты или хлораты металлов. В сухом воздухе оксидные пленки достаточно стойки; во влажной атмосфере, и особенно в воде, защитные свойства их невысоки. Защитные свойства оксидных пленок повышают пропиткой их маслом. Фосфатные покрытия на стали получают из растворов ортофосфорной кислоты и ортофосфатов марганца или цинка (например, ).

       и 

     Получающийся  по реакциям пористый кристаллический  фосфат металла образует поверхностную  пленку, хорошо сцепленную с поверхностью стали. Сами по себе фосфатные покрытия не обеспечивают достаточной защиты от коррозии. Их используют в основном в качестве подложки под краску, что повышает сцепление лакокрасочного покрытия со сталью и уменьшает коррозию в местах царапин. Защитные свойства фосфатной пленки, полученной на металле, значительно повышаются после покрытия ее (или пропитки) лаком, маслом, воском.

     Лакокрасочные покрытия наиболее распространены и  незаменимы. Лакокрасочное покрытие должно быть сплошным, безпористым, газо- и водонепроницаемым, химически стойким, эластичным, обладать высоким сцеплением с материалом, механической прочностью и твердостью. К некоторым покрытиям предъявляются специальные требования: повышенная стойкость при высоких температурах, стойкость против кислот, щелочей, бензина и т.п. Лакокрасочные покрытия делятся на две большие группы: лаки и краски (эмали). Краски (эмали) представляют собой смесь нерастворимы частиц пигмента (красителя), взвешенных в однородном органическом связующем. Лаки обычно состоят из смеси смолы или высыхающего масла с летучим растворителем. В процессе сушки происходит полимеризация смолы или масла и испарение растворителя. Пигменты обычно представляют собой оксиды металлов, например , , , или такие соединения, как , , и т.п. Связующими могут быть растительные масла (льняной древесное, ореховое, конопляное, подсолнечное, соевое и др.). Если требуется стойкость к кислотам, щелочам или к воздействию высоких температур и особенно для работы в условиях постоянного контакта с водой, в качестве связующих или их компонентов используй синтетические смолы.

     Электрохимическая защита - это метод защиты, основанный на торможении анодных или катодных реакций коррозионного процесса. Электрохимическая защита осуществляется присоединением защищаемой конструкции металла с более отрицательным значением электродного потенциала - протектора, а также катодной (катодная защита) или анодной (анодная защита) поляризацией за счет извне приложенного тока. Наиболее применима электрохимическая защита в коррозионных средах с хорошей ионной электрической проводимостью. Катодная поляризация (защита) используется для защиты от коррозии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, водным резервуарам, буровым платформам, морским трубопроводам и оборудованию химических заводов.

Информация о работе Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита