Лекции по «Физическая культура»

Автор работы: Пользователь скрыл имя, 16 Октября 2012 в 17:07, курс лекций

Описание

Не зная строения организма человека, особенности процессов жизнедеятельности в отдельных его органах, системах органов и в целостном организме, нельзя обучать, воспитывать и лечить человека, а также обеспечить его физическое совершенствование.

Работа состоит из  1 файл

1.doc

— 521.50 Кб (Скачать документ)

Кроме белков и углеводов  в плазме крови имеются и другие органические вещества. К ним относятся продукты белкового обмена (мочевина, мочевая кислота, креатин, аммиак) и продукты обмена углеводов (молочная кислота и др.), аминокислоты и др.

Молочная кислота содержится в крови    в состоянии    покоя    в очень небольшом количестве — примерно 15 мг в 100 мл крови. Но при физической работе, особенно беге на средние дистанции, ее содержание может увеличиться в 20 раз — до 300 мг. Накопление молочной кислоты в крови снижает работоспособность организма.

Аминокислоты, образующиеся при расщеплении белков пищи в кишечнике, всасываются в кровь и разносятся ею ко всем органам. Из аминокислот строятся тканевые белки, специфические для каждого организма и каждого органа.

Среди неорганических веществ  плазмы крови наибольшее значение имеют минеральные соли. В водном растворе молекулы этих веществ всегда диссоциируют, т. е. распадаются на ионы. Больше всего в плазме ионов натрия (примерно 300 мг в 100 мл крови) и хлора (400 мг в 100 мл крови) и значительно меньше ионов калия, кальция, магния. Но значение для организма тех или иных ионов не определяется их количеством. Так, очень важны ионы кальция — без них кровь не свертывается, и человек может погибнуть от кровотечения; при уменьшении в плазме концентрации ионов калия нарушается работа сердца.

Минеральные вещества способствуют поддержанию    осмотического давления плазмы.

Величина осмотического  давления крови составляет примерно 8 атмосфер и все время поддерживается на постоянном уровне. Она может несколько повыситься при физической работе, когда в кровь поступает большое количество продуктов обмена веществ, но после работы быстро возвращается к исходной. Если же работа настолько тяжела, что вызывает слишком сильное изменение осмотического давления крови, то человек бывает вынужден прекратить ее.

Почему же так важно  сохранять постоянство осмотического  давления? Представим себе, что в  плазме крови накопилось много продуктов  обмена. Концентрация веществ, растворенных в ней, резко возросла, а поэтому осмотическое давление плазмы значительно увеличилось. Оболочка клеток крови является полупроницаемой мембраной. Она не пропускает внутрь клеток продукты обмена. Вода же легко переходит через эту оболочку. Что же произойдет при увеличении осмотического давления плазмы? Она начнет с большой силой притягивать воду. Вода выйдет из эритроцитов и лейкоцитов, и они погибнут. А раз погибнут клетки, доставляющие кислород всем органам, погибнет и весь организм.

Постоянство осмотического давления поддерживается определенными органами, главными из которых являются органы выделения — почки и потовые железы. Благодаря их деятельности продукты обмена веществ, которые постоянно образуются в организме, не оказывают существенного влияния на величину осмотического давления крови.

Среди минеральных веществ  плазмы крови важнейшее значение имеют ионы водорода. Эти ионы входят в состав всех кислот. От концентрации ионов водорода в растворе зависит его кислотность. рН артериальной крови в состоянии покоя равен 7,4. Это значит, что реакция крови слабо щелочная. При физической работе в плазму крови попадает большое количество продуктов обмена веществ. Среди них особенно много кислот. Казалось бы, при работе водородный показатель должен снижаться и реакция крови должна стать кислой. В действительности же этого не происходит, и рН крови даже при самой тяжелой работе не падает ниже 7,29—7,30. Только в исключительных случаях (чаще это бывает при динамической работе субмаксимальной мощности) наблюдается более выраженное уменьшение водородного показателя. Однако и в этих случаях реакция артериальной крови щелочная. Жизнедеятельность всех клеток и тканей организма протекает нормально лишь при определенной величине рН, т. е. при определенной кислотности окружающей их среды. Если сдвиг рН крови в кислую сторону становится очень большим, то человек испытывает очень неприятные ощущения и прекращает работу. Чрезмерный сдвиг рН вызывает гибель клеток.

Как же организм справляется  с резким увеличением кислых продуктов  обмена веществ при физической работе, почему почти не изменяется рН крови? Это происходит благодаря наличию в крови и тканях особых веществ, вернее комплексов веществ, которые называются буферными системами. Подобно тому, как буферы между вагонами сглаживают толчки при изменениях скорости движения поезда, так и буферные системы крови уменьшают сдвиги рН. Существует несколько буферных систем: 1) карбонатная система (ее деятельность обусловлена угольной кислотой и ее солями); 2) фосфатная (соли фосфорной кислоты); 3) буферная система белков плазмы; 4) буферная система гемоглобина. Последней принадлежит самая большая роль — около 75% буферной способности крови связано с гемоглобином.

Рассмотрим работу буферов  на примере карбонатной системы. Она представляет собой смесь угольной кислоты (Н2СО3) и ее соли бикарбоната натрия (NаНСОз). Когда в кровь поступает какая-либо кислота, более сильная, чем угольная, она вступает в реакцию с бикарбонатом. В результате образуется натриевая соль этой кислоты и угольная кислота, которая расщепляется на углекислый газ и воду.

Углекислый газ выдыхается через легкие, и, таким образом, лишние ионы водорода ликвидируются, и сдвиг  рН в кислую сторону не возникает.

 

 

Общее количество крови  составляет 7—8% массы тела человека. В покое 40—50% крови выключено из кровообращения и находится в «кровяных депо»: печени, селезенке, сосудах кожи, мышц, легких. В случае необходимости (например, при мышечной работе) запасной объем крови включается в кровообращение и рефлекторно направляется к работающему органу. Выход крови из «депо» и ее перераспределение по организму регулируется ЦНС.

 

Потеря человеком более 1/3 количества крови опасна для жизни. В то же время уменьшение количества крови на 200—400 мл (донорство) для здоровых людей безвредно и даже стимулирует процессы кроветворения.

 

При регулярных занятиях физическими упражнениями или спортом:

+ увеличивается количество  эритроцитов и количество гемоглобина  в них, в результате чего  повышается кислородная емкость крови;

+ повышается сопротивляемость  организма к простудным и инфекционным заболеваниям, благодаря повышению активности лейкоцитов;

+ ускоряются процессы  восстановления после значительной потери крови.

Кровь в организме  находится в постоянном движении, которое осуществляется по кровеносной  системе.

 

Кровеносная система  состоит из сердца и кровеносных сосудов. Кровеносные сосуды составляют два круга кровообращения — малый и большой. Функциональным центром кровеносной системы является сердце, Сердце — главный орган кровеносной системы — представляет собой полый мышечный орган, совершающий ритмические сокращения, благодаря которым происходит процесс кровообращения в организме.

Сердце выполняет роль двух насосов. Один (правая сторона  сердца) — продвигает кровь по малому кругу кровообращения, второй (левая сторона сердца) — по большому кругу кровообращения. В каждом круге кровообращения сеть кровеносных сосудов состоит из крупных сосудов — артерий, по которым кровь движется в сторону от сердца. По мере удаления артерии ветвятся на более мелкие сосуды — артериолы, которые в свою очередь делятся на тончайшие кровеносные сосуды — капилляры.

Обмен веществ между  кровью и тканями происходит на всем протяжении капилляров. Далее из капилляров кровь переходит в венулы —  мельчайшие венозные сосуды, из них — в вены и возвращается в сердце.

Сеть сосудов большого круга кровообращения пронизывает все ткани всех органов и частей тела человека. Продвигаясь по капиллярам большого круга кровообращения, кровь превращается из артериальной в венозную: она отдает тканям кислород и питательные вещества, одновременно насыщаясь углекислым газом и продуктами распада, которые переносит к органам выделения, а также выполняет другие функции.

Сосудистая сеть малого круга кровообращения проходит только легкие, где кровь превращается из венозной в артериальную, т.е. отдает в полость легких углекислый газ и насыщается кислородом.

 

Сердце благодаря центрам  автоматии  может сокращаться без внешних воздействий. Однако в целостном организме на его деятельность влияют разные факторы, и она постоянно изменяется в соответствии с возникающими требованиями.

Сокращения сердца становятся более мощными   при увеличении венозного притока, что происходит, например, в процессе физической работы. Если к сердцу притекает больше крови, то оно во время диастолы сильнее  растягивается. А чем больше предварительно растянута мышца, тем относительно сильнее она сокращается. Это относится и к скелетным, и к сердечным мышцам. Изменение работы сердца при изменении венозного притока следует рассматривать как саморегуляцию его деятельности. Саморегуляция имеет значение для приспособления сердца к разным условиям. Наибольшую роль в регуляции деятельности сердца играют центральная нервная система и некоторые химические вещества, содержащиеся в крови.

Нервы  сердца.  Сердце  иннервируется двумя парами центробежных нервов: блуждающими и симпатическими.

Блуждающие  нервы тормозят деятельность сердца.

Симпатические нервы, наоборот, учащают и усиливают сокращения сердца.

Особенно важную роль в регуляции деятельности сердца играют импульсы от рецепторов, расположенных в самом сердце и в стенках крупных сосудов. Например, в аорте находятся рецепторы, называемые барорецепторами, возбуждение которых возникает при повышении кровяного давления. Импульсы от этих рецепторов передаются в специальные центры продолговатого мозга, а оттуда в центры блуждающих нервов. В этих центрах возникает возбуждение. Поскольку блуждающие нервы тормозят деятельность сердца, возбуждение в их центрах сопровождается уменьшением силы сердечных сокращений. В результате кровяное давление снижается. Таким образом, сердце имеет «следящую» систему, обеспечивающую изменение его деятельности в зависимости от уровня кровяного давления.

В аорте и крупных  артериях находятся рецепторы и  другого рода — хеморецепторы. Они  возбуждаются под влиянием изменений в составе крови. Например, увеличение концентрации углекислоты в крови раздражает эти рецепторы и рефлекторно (через нервные центры) усиливает деятельность сердца.

Химические вещества, влияющие на деятельность сердца. Из веществ, находящихся в крови, на работу сердца наибольшее воздействие оказывают некоторые гормоны  и ионы солей калия и кальция.

Гормон, выделяемый мозговым слоем надпочечника — адреналин, — вызывает учащение и усиление сердечных сокращений. Его действие подобно действию симпатического нерва.

Ионы калия урежают  ритм, уменьшают силу сердечных сокращений, снижают возбудимость и проводимость сердечной мышцы. Поэтому в концентрированном растворе калия работа сердца ослабевает и оно останавливается в состоянии диастолы. Для нормальной работы сердца необходима строго определенная концентрация калия в омывающей его крови.

Ионы кальция учащают  ритм и усиливают сокращение сердца, повышают возбудимость и проводимость миокарда. При избытке кальция  сердце останавливается в состоянии  систолы, при его недостатке сокращения сердца ослабевают.

 

Деятельность сердца заключается в ритмичной смене сердечных циклов, состоящих из трех фаз: сокращения предсердий, сокращения желудочков и общего расслабления сердца.

Пульс — волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту под большим давлением при сокращении левого желудочка. Частота пульса соответствует частоте сокращений сердца. Частота пульса в покое (утром, лежа, натощак) оказывается ниже из-за увеличения мощности каждого сокращения. Урежение частоты пульса увеличивает абсолютное время паузы для отдыха сердца и для протекания процессов восстановления в сердечной мышце. В покoe пульс здорового человека равен 60—70 удар/мин.

 

Кровяное  давление создается силой сокращения желудочков сердца и упругостью стенок сосудов. Оно измеряется в плечевой артерии. Различают максимальное (или систолическое) давление, которое создается во время сокращения левого желудочка (систолы), и минимальное (или диастолическое) давление, которое отмечается во время расслабления левого желудочка (диастолы). Давление поддерживается за счет упругости стенок растянутой аорты и других крупных артерий. В норме у здорового человека в возрасте 18— 40 лет в покое кровяное давление равно 120/70 мм рт. ст. (120 мм систолическое давление, 70 мм — диастолическое). Наибольшая величина кровяного давления наблюдается в аорте.

По мере удаления от сердца кровяное давление оказывается все  ниже. Самое низкое давление наблюдается в венах при впадении их в правое предсердие. Постоянная разность давления обеспечивает непрерывный ток крови по кровеносньм сосудам (в сторону пониженного давления).

 

Физическая работа способствует общему расширению кровеносных сосудов, нормализации тонуса их мышечных стенок, улучшению питания и повышению обмена веществ в стенках кровеносных сосудов. При работе окружающих сосуды мышц происходит массаж стенок сосудов. Кровеносные сосуды, не проходящие через мышцы (головного мозга, внутренних органов, кожи), массируются за счет гидродинамической волны от учащения пульса и за счет ускоренного тока крови. Все это способствует сохранению эластичности стенок кровеносных сосудов и нормальному функционированию сердечно-сосудистой системы без патологических отклонений.

Напряженная умственная работа, малоподвижный образ жизни, особенно при высоких нервно-эмоциональных напряжениях, вредные привычки (курение, потребление алкоголя) вызывают повышение тонуса и ухудшение питания стенок артерий, потерю их эластичности, что может привести к стойкому повышению в них кровяного давления и, в конечном итоге, к гипертонической болезни.

Информация о работе Лекции по «Физическая культура»