Лекции по «Физическая культура»

Автор работы: Пользователь скрыл имя, 16 Октября 2012 в 17:07, курс лекций

Описание

Не зная строения организма человека, особенности процессов жизнедеятельности в отдельных его органах, системах органов и в целостном организме, нельзя обучать, воспитывать и лечить человека, а также обеспечить его физическое совершенствование.

Работа состоит из  1 файл

1.doc

— 521.50 Кб (Скачать документ)

 

Изменения электрического состояния клетки при возбуждении. Потенциал действия. При раздражении клетки происходит изменение мембранного потенциала покоя. Возбужденный участок мембраны оказывается снаружи заряженным отрицательно по отношению к своей внутренней поверхности. Иными словами, происходит перезарядка мембраны, смена знаков зарядов — инверсия потенциала покоя. Этот процесс обусловлен изменениями проницаемости мембраны под влиянием раздражения. Она на какое-то короткое время становится значительно более проницаемой для ионов Na+, чем для ионов К+. Ионы Na+, которых в межтканевой жидкости, как уже указывалось, в 10—12 раз больше, чем внутри  клетки, начинают проникать внутрь. Нейтрализуя отрицательный заряд внутренней поверхно-сти мембраны в раздражаемом участке, они снижают тем самым существовавшую в покое разность потенциалов, т. е. приводят к деполяризации мембраны. Интересно, что этот процесс сам себя подкрепляет: начинающаяся деполяризация повышает проницаемость мембраны для ионов Nа+; диффузия катионов Na+ углубляет депо-ляризацию; в связи с этим проницаемость для этих ионов становится   еще   более   значительной и т. д. В результате этого процесса происходит не только деполяризация мембраны, но и ее перезарядка: внутренняя поверхность ее в раздражаемом участке становится заряженной положительно, а наружная по отношению к ней — отрицательно. При измерении разности потенциалов между наружной и внутренней поверхностями клетки оказывается, что вместо заряда — 90 мв внутри, который отмечался в состоянии покоя, там обнаруживается заряд + 30— 40 мв. Проникновение положительно заряженных ионов Na+ внутрь клетки привело к развитию электрического процесса, характеризующегося напряжением 120—130 мв {от—90 до +30 мв). Этот процесс — колебание потенциала покоя — получил название потенциала действия (ПД). Он характеризует возникновение возбуждения в нервной или мышечной клетке.

В противоположность потенциалу покоя, отличающемуся постоянством, потенциал действия представляет собой быстро протекающий процесс. Он состоит из двух фаз — фазы деполяризации, которая приводит к перезарядке мембраны, и фазы реполяризации, заключающейся в восстановлении исходного электрического состояния клетки — мембранного потенциала (рис. 6). Фаза реполяризации начинается в тот момент, когда потенциал действия достигает своей вершины — пика, т. е. амплитуды 120—130 мв. Проницаемость мембраны для ионов Nа+ при этом резко снижается, и дальнейшее их поступление внутрь почти прекращается. В этот момент проницаемость мембраны для ионов К+ оказывается значительно выше. В связи с      отмечавшейся выше разностью концентрации калия внутри и снаружи клетки эти катионы начинают интенсивно покидать клетку. К этому процессу присоединяется и извлечение проникших в клетку ионов Nа+ — как бы «выкачивание» их. Все это приводит к восстановлению исходного состояния клетки — положительному заряду наружной поверхности мембраны и отрицательному — внутренней. Фаза деполяризации потенциала действия (восходящая фаза — см. рис. 6) длится около 1 мсек., в некоторых клетках — 0,5 мсек.; фаза реполяризации (нисходящая фаза) значительно длительнее первой.


 

Проведение возбуждения по нервным и мышечным волокнам. С потенциалом действия связано проведение возбуждения по нервным и мышечным волокнам. При возникновении потенциала действия между возбужденным участком и соседними, находящимися в состоянии покоя, возникает разность потенциалов. Наружная поверхность возбужденного участка мембраны, как отмечалось выше, оказывается отрицательно заряженной, а соседнего с ним — находящегося в состоянии покоя — положительно заряженной. В связи с разностью потенциалов между этими соседними участками возникает электрический ток — так называемый местный ток действия. Этот ток является раздражителем участка волокна, находившегося до этого времени в состоянии покоя. Под влиянием раздражения в этом участке начинаются описанные выше процессы — деполяризация, повышение натриевой проницаемости и т. д., т. е. возникает потенциал действия. Затем возбуждается следующий участок волокна и т. д. Таким образом, проведение импульса заключается, по существу, в последовательном, один за другим, возбуждении участков волокна.

Передача возбуждения  через синапсы происходит, как уже говорилось выше, через посредство химических веществ — медиаторов, вырабатываемых концевыми веточками аксонов. Химическим путем передается возбуждение как в синапсах центральной нервной системы, где разветвления одних аксонов образуют синапсы на теле и дендритах других, так и в нервномышечном, или мионевральном, синапсе. Медиатором окончаний мотонейрона в мышечных волокнах является ацетилхолин. При возбуждении нервных окончаний синаптические пузырьки, в которых содержится медиатор, лопаются, ацетилхолин проникает через пресинаптическую мембрану в синаптическую. щель и вызывает возбуждение постсинаптической мембраны. Последняя обладает высокой чувствительностью к этому воздействию. Под влиянием ацетилхолина повышается ее проницаемость для ионов Na+ и К+, происходит деполяризация и возникает постсинаптический потенциал. С постсинаптической мембраны возбуждение передается на другие (внесинаптические) участки мембраны мышечного волокна снова электрическим путем (см. рис. 4).

 

Значение функционального состояния нервно-мышечного аппарата для развития процесса возбуждения. Возбудимость. Способность живой ткани развивать возбуждение в ответ на раздражение называется возбудимостью. Таким образом, возбудимость является одним из основных свойств живой ткани, обеспечивающих взаимодействие организма со средой. Разные ткани обладают различной возбудимостью. Уровень возбудимости одной и той же ткани тоже изменчив. Умеренные воздействия на ткань повышают ее возбудимость, чрезмерные по силе или длительности понижают. Так, под влиянием разминки возбудимость центральной нервной, системы и нервно-мышечного аппарата повышается, при утомительной работе понижается.

Изменение возбудимости происходит закономерно во время  протекания каждой волны возбуждения. Когда возникает потенциал действия (в течение фазы деполяризации), ткань  становится невозбудимой: она не способна ответить на новое раздражение. Это так называемая абсолютная рефракторная фаза. Постепенно возбудимость ткани восстанавливается до исходного уровня, а затем становится на некоторое время даже выше его.

Возбудимость можно  измерять. Чем выше возбудимость ткани, тем легче вызвать ее возбуждение — ответную реакцию. Минимальная сила раздражения, которая нужна, чтобы вызвать возбуждение ткани, характеризует так называемый порог возбудимости данной ткани и называется пороговой силой. Уровень возбудимости служит важным показателем функционального   состояния   ткани.

Функциональная подвижность (лабильность). Одним из важных факторов, от которых зависит деятельность возбудимых тканей (таких, как нервные клетки, синапсы, нервно-мышечный аппарат), является скорость протекания возбуждения, получившая название лабильности (Н. Е. Введенский). В одних образованиях волна возбуждения развивается и затухает с большой скоростью, в других значительно медленнее. От скорости возбуждения зависит частота импульсов, которую ткань может развить в единицу времени. Наиболее высока лабильность нервных волокон, значительно ниже лабильность мышечных волокон, нервных клеток и особенно синапсов.

Лабильность, как и  возбудимость ткани, не постоянна. Умеренные воздействия увеличивают скорость протекания волны возбуждения, чрезмерные — ее уменьшают. Под влиянием разминки, например, лабильность центрально-нервных образований и нервно-мышечного аппарата повышается, при утомлении понижается.

Об уровне лабильности  можно судить по разным показателям. Н.Е.Введенский предложил измерять ее максимальным числом волн возбуждения, которое может возникнуть в ткани в единицу времени (в 1 сек).

 Биохимические процессы в мышце при возбуждении. Электрические проявления возбуждения, т. е. потенциалы действия, возникающие на мембране мышечного волокна, приводят к целому ряду химических процессов, которые завершаются механической реакцией волокна — сокращением.

Связь между электрическими процессами, происходящими на мембране, и механической реакцией миофибрилл обеспечивается при посредстве ионов кальция (Са++). В состоянии покоя эти ионы находятся преимущественно внутри системы трубочек и полостей, которая пронизывает волокно вдоль (между миофибриллами) и поперек (между отдельными частями —саркомерами миофибрилл). Эти трубочки и полости тоже имеют свои полупроницаемые мембраны, через которые ионы Са++ в покое почти не проникают. Когда возбуждается мембрана мышечного волокна, ее потенциалы действия вызывают деполяризацию мембран трубочек и полостей и повышают их проницаемость. Ионы Са++ выходят (в связи с тем что концентрация их внутри этой системы значительно выше, чем снаружи)  и оказываются очень близко от миофибрилл.

Ионы Са++ влияют на белок миозин. При рассмотрении строения миофибрилл мышечного волокна уже отмечалось, что они состоят из протофибрилл — тонких (актиновых) и относительно более толстых (миозиновых), чередующихся между собой в поперечном направлении. Миозин, как оказалось, является не только сократительным белком мышцы, а обладает еще и свойствами фермента. Он способен расщеплять очень богатое энергией вещество — аденозинтрифосфорную кислоту (АТФ). Когда волокно находится в состоянии покоя, миозин как фермент неактивен. При воздействии ионов Са++ ферментативные свойства миозина активизируются, и он начинает расщеплять АТФ. За счет химической энергии, которая освобождается при этом, происходит сокращение миофибрилл, т. е. втягивание (скольжение) актиновых протофибрилл в промежутки между миозиновыми. Расслабление мышечного волокна связано с удалением Са++ от сократительного аппарата. Специальные исследования показали, что ионы Са++ после воздействия на миозин, которое привело к расщеплению АТФ и сокращению волокна, как бы «выкачиваются» из сферы сократительного аппарата в ту систему, где они находились до возбуждения мышечного волокна.

 

Работа мышц. В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энергию напряжения и кинетическую энергию движения. Различают внутреннюю и внешнюю работу. Внутренняя работа связана с трением в мышечном волокне при его сокращении. Внешняя работа проявляется при перемещении собственного тела, груза, отдельных частей организма (динамическая работа) в пространстве. Она характеризуется коэффициентом полезного действия (КПД) мышечной системы, т.е. отношением производимой работы к общим энергетическим затратам (для мышц человека кпд составляет 15—20%, у физически развитых тренированных людей этот показатель несколько выше).

 

 

 

Химизм  и энергетика мышечного сокращения.

Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения.

Расщепление и  ресинтез аденозинтрифосфорной кислоты (АТФ). Первичным источником энергии для сокращения мышцы служит расщепление АТФ (она находится в клеточной мембране, ретикулюме и миозиновых нитях) на аденозиндифосфорную кислоту (АДФ) и фосфорные кислоты.

Аденозинтрифосфат является непосредственным источником энергии для мышечного сокращения. Однако запас этого вещества в мышце весьма ограничен. Его могло бы хватить на поддержание сокращения мышцы в течение лишь 1 сек. Возможность совершать работу в течение более или менее длительных промежутков времени связана с процессами непрерывного пополнения количества АТФ в мышце. Кроме того, с наличием АТФ связано расслабление мышцы. Недостаточный ресинтез (восстановление) АТФ приводит к понижению пластичности миофибрилл и затрудняет их расслабление. Таким образом, расщепление АТФ —это лишь первое звено в цепи химических процессов, которые происходят в мышце при ее деятельности. Вслед за ним совершаются реакции, обеспечивающие ресинтез АТФ.

Ресинтез АТФ заключается  в присоединении к аденозиндифосфорной кислоте (АДФ), образовавшейся при распаде АТФ, молекулы фосфорной кислоты. Эта реакция требует энергии. Хорошо известно, что если реакция в одном направлении идет с освобождением энергии, то в обратном направлении она совершается с поглощением энергии. В мышце имеются содержащие энергию вещества. Есть они и в других органах, откуда могут доставляться мышце кровью. К таким энергетическим веществам относятся углеводы, жиры, белки. Но заключенная в этих веществах энергия освобождается только при их расщеплении. Эти процессы происходят под влиянием ферментов и эффективнее всего (с освобождением больших количеств энергии) при участии кислорода. Однако доставка кислорода к работающим мышцам в необходимом объеме оказывается для организма при некоторых физических нагрузках непосильной задачей. При недостатке кислорода ресинтез АТФ может временно происходить за счет реакций, которые совершаются без него. Они менее эффективны, но выручают организм в тех случаях, когда снабжение мышц кислородом не может быть своевременным и достаточным. Таким образом, ресинтез АТФ происходит двояким путем: за счет расщепления веществ без участия кислорода (анаэробные процессы) и с участием кислорода (аэробные процессы).

Ресинтез АТФ анаэробным путем происходит в первую очередь за счет креатинфосфорной кислоты (КрФ), содержащейся в мыш-цах. Это вещество тоже богато энергией. Реагируя с АДФ, оно отдает ей фосфорную кислоту, которая вместе с энергией, заклю-ченной в ее связях, обеспечивает образование АТФ. Эта реакция идет очень быстро (в течение тысячных долей секунды), но не может поддерживать ресинтез АТФ длительно, так как запас КрФ в мышце тоже ограничен. Концентрация КрФ в мышцах в 3-4 раза больше в сравнении с АТФ. Умеренное (на 20-40%) снижение АТФ сразу компенсируется за счет КрФ.

Несколько позднее, чем  КрФ, включаются анаэробные реакции  расщепления углеводов — гликогена, глюкозы (реакции гликолиза). Углеводы образуют при этом соединения с молекулами фосфорной кислоты. По мере распада углеводов освобождается энергия, которую фосфатные группы переносят на АДФ, обеспечивая таким образом ресинтез АТФ. За счет углеводов, которых в организме значительно больше, чем КрФ, анаэробный ресинтез АТФ может поддерживаться гораздо дольше. Предел этим анаэробным возможностям ресинтеза АТФ наступает в связи не столько с исчерпанием углеводных запасов, сколько с происходящим при этих процессах накоплением недоокисленных продуктов обмена.

При анаэробном расщеплении  углеводы распадаются не до конечных своих продуктов обмена, которыми являются углекислый газ и вода, а лишь до промежуточных — молочной и пировиноградной кислот. Эти вещества богаты еще энергией и могли бы освободить ее при дальнейшем расщеплении, но только при участии кислорода. Помимо того, что невозможность использовать энергию этих веществ делает анаэробный распад углеводов малоэффективным процессом, накопление их в мышцах и крови может резко снизить работоспособность. Концентрация лактата в крови в покое составляет 1-2 ммоль/л, а после интенсивных физических нагрузок в течение 2-3 мин эта величина может достигать 18-20 ммоль/л (в 10-20 раз).  Недоокисленные продукты изменяют состояние внутренней среды организма, сдвигают ее реакцию в кислую сторону, что неблагоприятно отражается на активности ряда ферментов, затрудняя обменные процессы в различных органах.

Информация о работе Лекции по «Физическая культура»