Термодинамикалық түсініктер мен анықтамалар

Автор работы: Пользователь скрыл имя, 04 Ноября 2012 в 08:36, реферат

Описание

Термодинамикалық түсініктер мен анықтамалар. Термодинамика денелер энергиясыньщ бір-біріне жылу мен жұмыс түрінде өзгеруін, айналуын зерттейді. Қоршаған ортадағы энергияның осылай алмасуы термодинамикада сандық сипаттама ретінде қарастырылады. Жылу, электрон, атом, молекула сияқты бөлшектердің ретсіз қозғалысын, яғни олардың кинетикалық энергиясының жылу түріндегі энергиямен алмасуын, ал жұмыс — сол бөлшектердің реттелген қозғалысын кинетикалық энергия түрінде сипаттайды.

Работа состоит из  1 файл

ТЕРМОДИНАМИКАНЫҢ БІРІНШІ ЗАҢЫ.docx

— 50.59 Кб (Скачать документ)

Кез еелген процестердігі системаның ішқі энергия  өсімшесі, осы системаға берілген жылу мөлшерінен система аткарған жұмысты азайтканға тен:

 

U=Q-A (11)

Бұдан ішкі энергияның өзгеруі процестерді қалай, қандай жолмен жүргізгенге байланысты емес, системаның бастапқы және соңғы күйіне тәуелді екенін көреміз. Бұл, ішкі энергияның система күйінің функциясы екенін дәлелдейді. Егер функцияның мәні күй параметріне ғана байланысты болып, процестің бұрынғы күйімен анықталмаса, онда ол функцияны күй параметріне функциялы деп те айтады. Жылу мен жұмыс мұндай қасиет көрсетпейді, олар система күйінің функциясы емес және процестердщ қалай, қандай жолмен жүргізілгеніне тәуелді. Осы айтылғандарды нақтылай түсу үшін, термодинамиканьщ бірінші заңының дифференциалдық түрін математикалық өрнекпен көрсетейік:

 

dU=bQ-bA (12)

(10) және (11) теңдеулер— термодинамиканың бірінші заңының аналитикалық мәні. Оларды өткен ғасырдың ортасында, бір-бірінен тәуелсіз әуелі Р. Майер, сосын Д. Джоуль ашқан. Алғашында бұл теңдеулер тек механикалық жұмыстарды сипаттауға ғана қолданылған. Бертін келе Г. Гельмгольц оларды жалпы түрге ауыстырды. Бұл теңдеулердегі А кез келген жұмыс түрін көрсетеді. Ал, жалпы жұмыс мөлшері системаға әсер еткен күштердің қосындысының жүргізілген жұмыс жолына көбейтіндісіне тең. Газ өз көлемінің ұлғаюы кезіндегі жұмыстар жиірек қарастырылады.

МұндайдаbA=pdY және А=Spdv  Осы жағдайда термодинамиканың бірінші заңын былайша өрнектеуге болады: (dU=Q-S= (2 —| немесе dU=dQ-pdY. Енді осы өрнекті басқа жұмыс түрлеріне қолданайық:

а) р жүгін dh биіктігіне көтергенде:

bA=pdh-mgdh

(12а)

мұндағы m-масса, g-еркін тусу үдеуі.

 

 

 

 

 

Іен жүргізгенге  байланысты емес, системаның бастапқы жән< оңғы күйіне тәуелді екенін көреміз. Бұл, ішкі энергияның сис ема күйінің функциясы екенін дәлелдейді. Егер функцияның мән үй параметріне ғана байланысты болып, процестің бұрынғы күйі Іен анықталмаса, онда ол функцияны күй параметріне функцияль ,еп те айтады. Жылу мен жұмыс мұндай қасиет көрсетпейді, ола{ истема күйінің функциясы емес және процестердщ қалай, қандаі шлмен жүргізілгеніне тәуелді. Осы айтылғандарды нақтылаі үсу үшін, термодинамиканьщ бірінші заңының дифференциалдьп үрін математикалық өрнекпен көрсетейік:

 

dU (12;

 

(10) және (11) теңдеулер— термодинамиканың  бірінші заңы Іың аналитикалық  мәні. Оларды өткен ғасырдың ортасында,  бір іірінен тәуелсіз әуелі Р. Майер, сосын Д. Джоуль ашқан. Алға иында бұл теңдеулер тек механикалық жұмыстарды сипаттауғ; •ана қолданылған. Бертін келе Г. Гельмгольц оларды жалпы түрг Іуыстырды. Бұл теңдеулердегі А кез келген жұмыс түрін көрсете ;і. Ал, жалпы жұмыс мөлшері системаға әсер еткен күштердіі ;осындысының жүргізілген жұмыс жолына көбейтіндісіне тең. Га Із көлемінің ұлғаюы кезіндегі жұмыстар жиірек қарастырыладь;

 

2

 

Mұндайда   және А= |. Осы жағдайда термодинами

 

1 2

 

аның  бірінші заңын былайша өрнектеуге болады:

 

 

 

немесе . Енді осы өрнекті басқа жұмыс түрлерін kолданайық:

 

 

 

б) потенциал  айырмасы ф болатын электр зарядын  бір нүктеден :екіншіге тасымалдағанда:

 

(126)

 

в)  шамаға беттік тұтқырлық өзгергенде:

 

(12в)  — тұтқырлық).

 

Термодинамиканың  бірінші бастамасы диференциал түрінде : жиі қлданылады. Ол мына өрнекте көрсетілген:

 

(13)

 

25

 

мұндағы А— система көлемі өзгергендеғі жұмыс және оны паи-далы жұмыс деп атайды.

 

Ашық  системалар үшің, ішкі энергияның экстенсивтік шама және оның система массасына  байланысты екенін ескерген жөн. Олай болса, термодинамиканың бірінші заңы ашық системалар үшін

 

 ЖӘНЕ dU

 

(15)

 

мұндағы Ем системадағы масса өзгерісіне байланысты энергия.

 

Термохимия. Системаның ішкі энергиясы химиялық реакция ‘ кезінде едәуір өзгерістерге кезігеді. Бұған басты себеп, реакция ; нәтижесінде алынған қосылыстар мен реакцияға түсетін заттардын ішкі энергияларының айырмашылығы бар. Мұны карастырудың маңызы термодинамикалық есептеулер үшін зор және ол молеку-лалардағы жекелеген химиялық байланыстардың күшін бағалап, энергиясын зерттеу, олардың сандык, мәнін табу үшін керек. Хи-миялық реакциялар кезіндегі ішкі энергияның өзгеруі, жалпы бар- : лық процестердегі секілді, жылуды сідіру немесе бөліп шығару және мұның салдарынан жұмыстын, атқарылуы сияқты құбылыс-тармен тығыз байланыста өтеді. Әдетте, мұндағы жұмыс өте аз болады. Ал, химиялық реакциялар кезінде пайда болатын жылу термодинамиканың термохимия (жылу химиясы) деп аталатын тарауында қарастырылады. Енді химиялық реакциялардың жылу эффектісі (әсері) үғымын енгізелік. Химиялық реакциялардың жылу эффектісі деп химиялық реакция нәтижесінде бөлінетін немесе сіңірілетін жылуды айтады. Осы тұжырым дәл болу үшіи мынадай үш шарт орындалуы керек:

 

1. Қөлем  немесе кысым тұракты.

 

2. Қөлемнің  ұлғаю кезінде пайда болатын  жұмыстан басқа бір-де-бір жұмыс  жүргізілмейді, яғни А = 0.

 

3. Реакцияға  дейінгі және кейінгі заттардың  температуралары бірдей, яғни Т1 — Т2.

 

Термохимияның негізі Гесс заңы болып саналады. Кейде  оны реакция жылулары қосындыларының тұрақтылығы туралы заң деп те атайды және ол былайша тұжырымдалады: химиялық реак-циялардыц жылу эффектісі реакцияға қатысатын жэне одан алы-натын заттардық табиғаты жэне күйімен анықталады да арадағы сатылай жүретін химиялық реакцияларға тәуелсіз, яғни әуелгі күйден соңғыға ауысу әдісіне де байланысты емес.

 

Реакциялардағы  жылу қосындысының тұрақтылығы туралы заңды 1836—1840 жылдарда жүргізген нақтылы  тәжірибелері нә-тижесінде Петербург университетінің профессоры Г. И. Гесс тұжы-

 

26

 

Бұған басты себеп, реакция әтижесінде алынған қосылыстар мен реакцияға түсетін заттардын ішкі энергияларының айырмашылығы бар. Мүны карастырудың аңызы термодинамикалық есептеулер үшін зор және ол молекуалардағы жекелеген химиялық байланыстардың күшін бағалап, нергиясын зерттеу, олардың сандык, мәнін табу үшін керек. Химиялық реакциялар кезіндегі ішкі энергияның өзгеруі, жалпы бар-ық процестердегі секілді, жылуды сідіру немесе бөліп шығару сәне мұның салдарынан жұмыстын, атқарылуы сияқты құбылыс-армен тығыз байланыста өтеді. Әдетте, мұндағы жұмыс өте аз олады. Ал, химиялық реакциялар кезінде пайда болатын жылу ермодинамиканың термохимия (жылу химиясы) деп аталатын арауында қарастырылады. Енді химиялық реакциялардың жылу ффектісі (әсері) үғымын енгізелік. Химиялық реакциялардың шлу эффектісі деп химиялық реакция нәтижесінде бөлінетін :емесе сіңірілетін жылуды айтады. Осы тұжырым дәл болу үшіи Іынадай үш шарт орындалуы керек:

 

1. Қөлем  немесе кысым тұракты.

 

2. Қөлемнің  ұлғаю кезінде пайда болатын  жұмыстан басқа бір-;е-бір жұмыс жүргізілмейді, яғни Л = 0.

 

3. Реакцияға  дейінгі және кейінгі заттардың  температуралары іірдей, яғни ТІ = Т2.

 

Термохимияның негізі Гесс заңы болып саналады. Кейде  оны /еакция жылулары қосындыларының тұрақтылығы  туралы заң Іеп те атайды және ол былайша тұжырымдалады: химиялық реак-\иялардыц жылу эффектісі реакцияға қатысатын жэне одан алы-натын заттардық табиғаты жэне күйімен анықталады да арадағы •атылай жүретін химиялық реакцияларға тэуелсіз, яғни эуелгі гүйден соцғыға ауысу әдісіне де байланысты емес.

 

Реакциялардағы  жылу қосындысының тұрақтылығы туралы заңды 1836—1840 жылдарда жүргізген нақтылы  тәжірибелері нә-’ижесінде Петербург университетінің профессоры Г. И. Гесс тұжы-

 

рымдаған. Жоғарыда келтірілген үш шарттың алғашқы екеуі орындалғанда бұл заңды термодинамикадағы бірінші заңның сал-дары ретінде қарастыруға болады.

 

Заттардың жылу эффектілерін, басқа да термодинамикалык функцияларды өзара салыстыру үшін заттардың стандартты күйі жайлы  түсінікті енгіземіз. Қатты және сұйық заттардын стандарт-ты күйі ретінде өзін қоршаған ортаның қысымы 1 атм. болған жағ-дайды қарастырады. Ал, газдар үшін стандартты күй деп олардың 1 атм. қысымдағы идеал газдың күйі қабылданады. Кейбір жағ-дайларда бұл күй нақты газ күйінен өзгеше болады. Мысалы, 25°С-тағы су буының стандартты күйі гипотетикалық болып есеп-теледі, өйткені осы 25°С-де қаныққан будың қысымы 0,0312 атм. және оыы осы температурада қысып, бір атмосфераға жеткізу мүмкін емес.

 

Термодинамикалық  функциялардың тәжірибе кезінде  алынған мағынасынан стандарттығы және керісінше есептегенде газдың 1 атм. қысымдағы және 25°С темпераурадағы мәнінің осындай жағдайдағы идеал газдан ерекше болатынын ескерген жөн. Ол үшін кез келген немесе берілген температурадағы стандартты күй қабылданады. Әдетте, анықтамалықтарда термодинамикалық функциялардың мәні 25°С немесе 298, 15 К берілген.

 

Судың түзілу реакциясын алайық:

 

Н2+ 0,5О2 = Н2О (с) Н293=-68,315ккал\моль Н2+0,50=Н2О (бу) Н293= 57,796ккал\моль

 

Мұндағы энтальпияның дәреже көрсеткішіндегі  ° онын, стан-дартты екенін көрсетсе, индексіндегі 298 Кельвин температурасын, яғни абсолюттік температураны көрсетеді. Бүл жазулардан, су-тектің бір молі мен оттектің жарты молі стандартты күйде алынып, олардан сүйық және бу күйіндегі бір моль су молекуласы түзіліп, өздеріне тән жылу эффектілерімен сипатталғаны көрінеді. Мұндағы кейбір шамалы ғана айырмашылық стандартты күй бірдей болса да, бірі сұйық та, екіншісі бу болып (газ) келетін фазалық айырмашылықта. Жогарыда келтірілген су буының гипо-тетикалық айырмашылығы р = 0,0312 атм., оның идеал газдікінен айырмашылығы шамалы.

 

Реакция жылуын жазудын екі әдісі бар  және оларға сәйкес белгілеудің де екі түрі белгілі. Біз мұнан былай термодинамика-лық түр деген ұғымды қолданамыз. Бұрын да айтылғандай систе-ма жылуДы өзіне қабылдаса, онда жылу оң делінеді. Кейбір оқу-лықтар мен қүралдарда “термохимиялық” деп аталатын түр қолданылады және ондағы пікірге сәйкес системадан жылу бөлін-се, ол оң делінеді. Бұл түрдегі реакция теңдеуі, төмендегідей жа-зылады:

 

С6Н6 (с)+7,5О2 (г)=6СО2 + ЗН2О (с) +780,98 ккал.

 

Термодинамикалық  жүйеде химиялык реакция теңдеуіне  реак-цияға түсетін және одан алынған реагенттердің ішкі энергиясы

 

27

 

немесе  энтальпиаларынын, айырмасының шамасы тіркелш жазы-лады: С6Н6 (с)+7,5О2 (г)=6СО2 + ЗН2О (с); Q = H°298 = +780,98 ккал.

 

Реакция теңдеулерінде (қ)—қатты, (кр)—кристалды, (с) — сұйық, (г)—газ деген белгілермен заттардың агрегаттық күйі көрсетілген. Қейде системадағы заттардың қысымы, концентра -циясы қосымша белгіленеді. Сол сияқты химиялық реакциялардың жылу эффектілерін сипаттағанда, ішкі энергиядан гөрі энтальпия мөлшері жиірек пайдаланылады.

 

Гесс  заңының практикадағы қолданбалы маңызы өте зор. Оның көмегімен әлі белгісіз, бірақ есептеу үшін не басқа мақсат-қа қажет болатын реакциялардың жылу эффектілерін есептеуге болады. Бұл жағдайда есептейтін реакцияларға жанама, қосым-ша, бірақ жылу зффектілері белгілі реакциялар пайдаланылады. Айталық, С + 0,5О2 = СО және С + СО2 = 2СО сияқты жүруі мен анықтауы, өлшеуі мен есептеуі аса қиын реакциялардьщ жылу эффектілерін есептеу керек болсын, оны анықтау үшін белгілі де-ректерді қосымша ретінде пайдаланамыз. Мынадай есепті шығарайық:

 

1) С  (гр)+О2 = СО2; Н=-94052 кал;

 

2) СО + 0,5 О2 = СО2; Н=-67640 кал реакциялары үшін Н° табу керек:

 

3) С  (гр)+0,502 = СО; Н0 = ?

 

4) С  (гр)+СО2 = 2СО; Н = ?

 

Ол үшін қолдағы бар деректерді пайдаланып, көміртек (IV) оксидінің түзілу схемасын жасайық (4, а-сурет).

 

 

 

С+0,502=Са

 

Гесс  заңына орай Н=Н-Н Жылу эффектілерімен жүргізілген амалдар да нақ осыны берері даусыз.

 

Н=Н-Н= 94052 – ( – 67640) = – 264 1 2 кал. 4-теңдеуді табу үшін, 1-ден 2-ні алып, сол айырманы теңдеу ал-дындағы коэффициентке сәйкес екі еселеу қажет:

 

Н=Н-2Н=41472 кал.

 

Жалпы түрдегі процестердің өзгеруі 4, б-суретте  келтірілген. Берілген А\, А2, А3, … заттар реакцияласып Вь В2, В3, … түзеді. Бұл реакция үш түрлі жолмен (әдіспен) жүруі мүмкін: ол біріншіден тікелей түрленуі мүмкін, мұндайда реакцияның жылу эффектісі Н1ге тең; екіншіден, 2, 3, 4-сатылары арқылы жүруі мүмкін, мүндағы жылу эффектісі Н2, Н3 және Н4 қосындысына теңеледі, ал 5, 6, 7 және 8-сатылары арқылы жүрген реакцияньщ жалпы жылу эффектісі осы реакциялардың жылу эффектілерінің косындысына тең. Гесс заңына сүйеніп, ондағы жылу эффектілерінің өзара қатынастағы байланысын пайдалансақ:

 

Н1=Н2+Н3+Н4=Н5+Н6+Н7+Н8

 

Қөптеген  химиялық қүбылыстар мен қосылыстар химиялық ре-акция нәтижесінде жүзеге асады. Ал, химиялық реакциялар өз сипатына байланысты бірнеше түрге жіктеледі. Олардың бәрі жы-лумен тікелей байланысты, өйткені әрбір химиялық реакция жүр-ген кезде, мейлі олар бір қосылысты алу, тотықтыру, ыдырату, нейтралдау болсын, бәрі бір олардың әрқайсысы жылу бөледі, не сіңіреді. Тіпті қышқыл, негіз, тұз және басқаларды еріткенде де жылу құбылыстары байқалады.

 

Белгілі жағдайда екі не үш химиялық элемент  немесе қосылыс өзара реакцияласуы нәтижесінде пайда болатын жылу мейлі ол сіңіру не шығару жылуы болсын, түзілу жылуы болады. Түзілу жылуы дегеніміз көрсетілген жағдайда, берілген заттардан (реак-цияға түсетін зат) реакция нәтижесінде бір моль өнім алынатын реакцияның жылу эффектісі. Түзілу жылуы оң және теріс мәнді болады. Жай заттардың түзілу жылуы нөлге тең.

 

Химиялық  реакциялардың жылу эффектісі реакция нәтижесінде алынатын өнім мен реакцияға түсетін заттардың (реагенттер-дің) ішкі энергияларының айырмасына тең:

 

Qv= (16)

 

Qp=реагент-регеант

 

1 1

 

Жану  дегеніміз де химиялық реакция, яғни кез келген химия-лық элементтің немесе қосылыстың, тіпті күрделі  заттың оттекпен әрекеттесуі. Әрине, бұл  химиялық реакцияны тотығу реакциясы  дейді, оның салдарынан оксид және көптеген жылу бөлінеді. Жа-ну жылуы деп берілген элемент не күрделі қосылыстың оттекпен

 

29

 

әрекеттесуі кезіңде оларға сәйкес жоғары оксид  түзілетін реакция-лардың жылу эффектісін айтады. Органикалық косылыстар оттек-пен  әрекеттескенде көміртек (IV) оксидін  және сұйық не бу (Газ) күйіндегі  су, кейде оның құрамында шамалы болса да күкірт, азот, фосфор сияқты элементтер болса, онда соларға сәйкес оксидтер түзіледі. Егер оксидтер құрамында инертті газдар, басқа да қосы-лыстар кездессе, олар жайлы арнайы ескерту айтылады. Жану жылуын сәтті пайдаланып, көптеген химиялық реакцияның жылу-ын есептеуге болады. Ал, жану жылуын пайдаланып, химиялык. реакцияның жылу эффектісін есептеуге Гесс заңы қолданылады, оған бірер мысал келтірейік.

Информация о работе Термодинамикалық түсініктер мен анықтамалар