Ветроэлектрические станции

Автор работы: Пользователь скрыл имя, 20 Июня 2013 в 14:34, реферат

Описание

Современное общество к концу ХХ века столкнулось с энергетическими проблемами, которые приводили известной степени даже к кризисам. Человечество старается найти новые источники энергии, которые были бы выгодны во всех отношениях: простота добычи, дешевизна транспортировки, экологическая чистота, восполняемость. Уголь и газ отходят на второй план: их применяют только там, где невозможно использовать что-либо другое. Всё большее место в нашей жизни занимает атомная энергия: её можно использовать как в ядерных реакторах космических челноков, так и в легковом автомобиле.

Работа состоит из  1 файл

Ветроэлектрические и Солнечные электростанции.doc

— 886.00 Кб (Скачать документ)

 

Ветро-солнечные  системы .Электрическая энергия может быть получена за счет преобразования солнечного излучения фотоэлектрическими батареями (ФБ). Несмотря на довольно высокую, в настоящее время, стоимость ФБ, их использование совместно с ВЭУ в некоторых случаях может быть эффективным. Поскольку зимой существует большой потенциал ветра, а летом в ясные дни максимальный эффект можно получить, используя ФБ, то сочетание этих ресурсов оказывается выгодным для потребителя.

Использование ветроустановок совместно с микроГЭС, ВЭУ могут использоваться в комбинации с микроГЭС, имеющими резервуар для воды. В таких системах при наличии ветра ветроагрегат питает нагрузку, а излишки энергии используются для закачивания воды с нижнего бьефа на верхний. В периоды ветрового затишья энергия вырабатывается микроГЭС. Подобные схемы особенно эффективны при малых ресурсах гидроэнергии. Установки, подключенные к энергосетям ВЭУ, подключенные к энергосетям, подразумевают связь с какой-либо существующей энергетической

сетью, которая  поставляет ветроустановке активную и  реактивную мощность для обеспечения запуска, работы и контроля ветроагрегата. Это означает, что электроэнергия, выработанная ВЭУ, поступает непосредственно в сеть. ВЭУ

начинают вырабатывать энергию при некоторой скорости ветра – обычно около 4 м/с для  большинства современных установок. Ток возбуждения берется из сети и используется для синхронизации генератора ВЭУ. Это означает, что если сеть отключена, то ветроагрегат не может производить энергию.

Соединенные с  сетью ВЭУ устанавливаются на территориях с хорошими

ветроэнергетическими  ресурсами для производства электроэнергии с целью

продажи ее энергетическим компаниям. Группа таких турбин составляет так

называемую "ветроферму". Ветроферма - это комплекс ВЭУ, часто  установленных рядами, которые перпендикулярны господствующему направлению ветра. При разработке такого проекта нужно учитывать наличие дорог для доступа к агрегатам, подстанции и мониторинговой и контрольной систем. Обычно участок земли, отведенный под ветроферму, используется и на другие нужды, например сельскохозяйственные.

 

Обычно в  ветрофермах используются крупные  ветроагрегаты мощностью

от 200 кВт до 1,5 МВт и выше. При этом общая  мощность ветрофермы может

достигать десятков и сотен мегаватт.

В штате Калифорния (США), например, за счет использования ветроферм

производится  столько электроэнергии, что ее хватает  для удовлетворения

потребностей  в энергии крупного города, такого, как Сан-Франциско, в течение года. Этот тип систем становится все более  популярным и в европейских странах, где, согласно Киотскому протоколу, поставлена цель снижения эмиссии парниковых газов.

 

В конечном итоге  можно сделать следующие выводы:

Факторы "За" ветроэлектрические станции:

1. Доступность,  повсеместное распространение и  неисчерпаемость ресурсов.

2. Источник энергии не нужно добывать и транспортировать к месту потребления.

3. Низкая цена  ветроэлектрических установок.

Факторы "Против" ветроэлектрических станций:

1. Непостоянство  скорости ветра, а следовательно  скачки напряжения.

2. Малая мощность.

 

Солнечные электростанции (СЭС)

 

Солнечное излучение  — экологически чистый и возобновляемый источник энергии. Запасы солнечной  энергии огромны, годовое количество поступающей на Землю энергии  составляет 1,05*1018 кВтч, из них 2*1017 кВтч приходится на поверхность суши. Из этого количества энергии 1,62*1016 кВтч в год могут быть использованы без ущерба для окружающей среды, что эквивалентно сжиганию 2*1012 т угля в год. Последняя цифра в 60 раз превышает прогнозируемое на 2020 год производство этого вида энергоресурсов на земном шаре — 34,2 млрд. т угля.

Однако использование  этой энергии для производства электричества  в крупных размерах сопряжено  с большими трудностями, главные  из которых — низкая плотность  солнечной радиации на поверхности  земли и прерывистый характер ее поступления. Известные пути преодоления этих препятствий — создание аккумуляторов энергии и комбинированных солнечно-топливных или солнечно-атомных энергосистем, а также применение концентрирующих солнечную энергию устройств, повышающих ее плотность. Однако, эти решения не нашли широкого применения особенно в странах, расположенных в высоких широтах, из-за неконкурентоспособности с традиционными электростанциями.

Преобразование  солнечной энергии в доступные  для использования виды осуществляется двумя способами: фототермическим − преобразование световой энергии в тепловую, а затем при необходимости в электрическую и фотоэлектрическим − прямое преобразование световой энергии в электрическую. Наиболее простой − это фототермический способ. При фототермическом способе солнечные лучи с помощью зеркал фокусируют на котле с водой, вода нагревается и превращается в пар, водяной пар направляют в турбину, где он совершает работу — вращение турбины. Генератор переменного тока, вращаемый турбиной вырабатывает электрический ток. Пригодны они и для работы в космосе, но в этом случае необходим специальный теплообменник— излучатель, выполняющий роль конденсатора пара. При этом если в наземной паротурбинной установке теплота конденсации отводится циркулирующей водой, то в условиях космоса отвод тепла отработавшего в турбине пара или газа возможен только излучением. Поэтому энергоустановка должна быть замкнутой. Энергоустановки, работающие на фототермическом способе имеют КПД около 11% и способны набирать номинальную частоту вращения турбины менее чем через одну минуту после наведения солнечного пятна на полость котла.

При фотоэлектрическом  методе происходит преобразование световой энергии в электрическую. Существует два типа фотоэлектрических генераторов: Термоэлектрогенераторы и солнечные батареи

Термоэлектрогенераторы  основаны на открытом в 1821 году немецким физиком Т.И. Зеебеком термоэлектрическом эффекте, состоящем в возникновении  на концах двух разнородных проводников  термо-ЭДС, если концы этих проводников  находятся при разной температуре.

Открытый эффект первоначально использовался в  термометрии для измерения температур. Энергетический КПД таких устройств, подразумевающий отношение электрической  мощности, выделяемой на нагрузке, к  подведенному теплу, составлял доли процента. Только после того, как академик А.Ф. Иоффе предложил использовать для изготовления термоэлементов вместо металлов полупроводники, стало возможным энергетическое использование термоэлектрического эффекта для выработки электроэнергии, и в 1940—1941 годах в Ленинградском физико-техническом институте был создан первый в мире полупроводниковый термоэлектрогенератор. Трудами А.Ф. Иоффе и его школы в 40—50-е годы была разработана и теория термоэлектрического эффекта в полупроводниках, а также синтезированы весьма эффективные термоэлектрические материалы.

Соединяя между  собой отдельные термоэлектрические элементы можно достичь достаточно больших мощностей. Однако установка  в 50 Вт будет весить около 1 кг, следовательно, чтобы обеспечить крупный город  электроэнергией около 10 ГВт необходимо, чтобы масса солнечной батареи была около 200 тыс. т.

Солнечная батарея — соединение нескольких фотоэлектрических генераторов. Фотоэлектрический генератор основан на внутреннем фотоэффекте. Первые фотоэлектрические генераторы с практически приемлемым КПД преобразования около 6% были разработаны Г. Пирсоном, К. Фуллером и Д. Чапиным в США в 1953—54 годах. Внутренний фотоэффект − явление перераспределение электронов по энергетическим состояниям в конденсированной среде, происходящее при поглощении электромагнитного излучения, и появления электрического тока в цепи. В неметаллических телах фотоэффект проявляется в изменении электропроводности, диэлектрической проницаемости среды или в возникновении на ее границах электродвижущей силы. В металлах из-за их высокой электропроводности этот эффект практически не заметен.

Обычно солнечные  батареи выполняют в виде плоской  панели, собранной из отдельных фотоэлементов, причём толщина полупроводника не превышает 0,2-0,3 мм. КПД серийно выпускаемых  фотоэлектрических генераторов 10-12%, у лучших образцов он достигает 15-18%. Фотоэлектрические генераторы способны преобразовывать энергию излучения сверхвысокой плотности до нескольких кВт/см2. Отдельные элементы фотоэлектрического генератора. могут быть соединены между собой как последовательно, так и параллельно; при этом от генератора можно получать соответственно малую силу тока при большом напряжении или большую силу тока, но при малом напряжении. Солнечные батареи имеют меньшую массу чем термоэлектрогенераторы. При вырабатываемой мощности в 200 Вт солнечная батарея имеет массу в 1 кг.

Особенностью  солнечных батарей является то, что  они вырабатывают только постоянный ток. Для преобразования постоянного  тока в переменный необходим инвертор. Инверторы − полупроводниковые приборы. Они могут быть разделены на два типа в соответствии с типом фотоэлектрических систем: инверторы для автономных систем и инверторы для сетевого применения.

Выходное напряжение автономных инверторов в большинстве  случаев составляет 220 В, а в инверторах мощностью 10 -100 кВт можно получать трехфазное напряжение 380 В. Все автономные инверторы преобразуют постоянный ток аккумуляторных батарей, поэтому входное напряжение выбирается из ряда 12, 24, 48 и 120 В. Чем больше входное напряжение, тем проще инвертор и тем больше его КПД. При больших напряжениях значительно меньше потери на передачу энергии от солнечного генератора к аккумуляторной батарее, регулятору зарядки и инвертору, но при этом усложняется конструкция солнечного генератора и его эксплуатация при опасных напряжениях (выше 40 В).

Энергетические  характеристики солнечных батарей  определяются полупроводниковым материалом, конструктивными особенностями  солнечных батарей является, количество элементов в батарее. Распространённые материалы для солнечных батарей — Si, GaAs; реже используются CdS, CdTe. Наиболее высокий КПД получен в солнечных батареях из Si со структурой, имеющей электронно-дырочный переход— 15% при освещении в земных условиях, и в солнечных батареях на основе GaAs с полупроводниковым гетеропереходом (18%).

Достоинства фотоэлектрического генератора − портативность, практически  неограниченный срок службы и хранения, отсутствие движущихся частей, простота обслуживания, отсутствие вредных для  окружающей среды выделений; их недостаток − относительно высокая стоимость. Фотоэлектрические генераторы используют в качестве автономных источников энергопитания аппаратуры космических летательных аппаратов, радиоприёмников и приёмно-передающих радиостанций, маяков и навигационных указателей, устройств антикоррозионной защиты нефтепроводов и газопроводов и т.п. Разработаны проекты создания солнечных электростанций большой мощности на основе фотоэлектрических генераторов, снабженных концентраторами солнечного излучения.

 

В конечном итоге можно сделать следующие выводы:

Факторы "За" солнечные электростанций:

1. Неисчерпаемость  используемых ресурсов.

2. Портативность.

3. Широкие перспективы  развития в космической промышленности.

4. Очень большой  срок эксплуатации установок

 

Факторы "Против" солнечных электростанций:

1. Высокая стоимость  установок.

2. Низкая плотность  поступающей энергии (солнечной).

3. Непостоянство  и прерывистый характер поступающей  энергии.

 

Заключение

Неоспорима  роль энергии в поддержании и  дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы прямо или косвенно больше энергии, чем ее могут дать мускулы человека.

Традиционные  источники энергии по-прежнему занимают ведущее положение в мировой электроэнергетике. Однако за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить всё до-роже. Кроме того, природные ресурсы ограничены, и, в конце концов, человечество будет вынуждено перейти сначала на повсеместное использование атомной энергии, а потом полностью на энергию ветра, Солнца и Земли.

Альтернативную  энергию повсеместно можно будет  использовать только тогда, когда традиционного топлива станет настолько мало, что его цена станет баснословно высокой; или когда экологический кризис поставит человечество на грань самоуничтожения. Уже сейчас можно существенно преуменьшить вероятность парникового эффекта и ликвидировать все экологически неблагоприятные районы за счёт использования чистой альтернативной энергии. Однако этого до сих пор не произошло из-за низкой рентабельности такого строительства. Установки производства альтернативной энергии очень дороги, а их мощность намного меньше мощности тепловых или атомных электростанций. Подготовительные работы для использования любого альтернативного источника энергии стоят очень дорого, кроме того, они не всегда безопасны как для людей, так и для окружающей среды. Поэтому моментального введения в эксплуатацию «правильного» источника электричества ожидать в ближайшее время не стоит.

 

 

 

 

 

 

 

Литература

1. Солоницын А. Второе пришествие ветроэнергетики // "Наука и жизнь", 2004, № 3.

2. Heinz Schulz. "Kleine Windkraftanlage" Technik. Erfahrungen. Mebergebnisse. Okobuch Verlag, Staufen, 1993.

3. Фатеев Е. М. Ветродвигатели.- М.: ГИНТИ машиностроительной литературы, 1962.

4. www.elektropribor.spb.ru/rufrset.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Солнечная батарея (станция)                                                    

 


Ветроэлектрические  станции

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

Гибридная энергетическая система

 


Информация о работе Ветроэлектрические станции