Искусственный интеллект

Автор работы: Пользователь скрыл имя, 15 Марта 2012 в 16:36, творческая работа

Описание

С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.

Содержание

Может ли машина мыслить? 4
История развития искусственного интеллекта за рубежом 6
История развития искусственного интеллекта в России 10
Нейрокибернетика 11
Кибернетика 12
Нейросети 17
Экспертные системы реального времени - основное направление искусственного интеллекта 19
Основные производители 20
Генетические алгоритмы 21
Модель бюджета РФ 23
Состояние и тенденции развития искусственного интеллекта 24
Успехи систем искусственного интеллекта и их причины 26

Работа состоит из  1 файл

Творческая работа.docx

— 61.12 Кб (Скачать документ)

очень большое  число нейронов участвует в обработке  информации;

  • один нейрон связан с большим числом других нейронов;
  • изменяющиеся по весу связи между нейронами;
  • массированная параллельность обработки информации.

Нейросети предпочтительны там, где имеется очень много входных данных, в которых скрыты закономерности. Целесообразно использовать нейросетевые методы в задачах с неполной или «зашумлённой» информацией, а также в таких, где решение можно найти интуитивно. Преимущества нейросети становятся видны тогда, когда довольно часто изменяются «правила игры».

Нейросети применяются

  • В экономике для предсказания рынков, оценки риска невозврата кредитов, предсказания банкротств, автоматического рейтингования, оптимизации товарных и денежных потоков, автоматического считывания чеков и форм.
  • Медицина: обработка медицинских изображений, мониторинг состояния пациентов, диагностика, факторный анализ эффективности лечения, очистка показаний приборов от шумов.
  • Авиация: обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета.
  • Связь: сжатие видео-информации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.
  • Интернет: ассоциативный поиск информации, электронные секретари и агенты пользователя в сети, фильтрация информации в push-системах, рубрикация новостных лент, адресная реклама, адресный маркетинг для электронной торговли.
  • Политические технологии: анализ и обобщение социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, визуализация социальной динамики населения.
  • Автоматизация производства: оптимизация режимов производственного процесса, комплексная диагностика качества продукции (ультразвук, оптика, гамма-излучение и т. д.), мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника.

Экспертные системы  реального времени - основное направление искусственного интеллекта

Среди специализированных систем, основанных на знаниях, наиболее значимы экспертные системы реального времени, или динамические экспертные системы. На их долю приходится 70 процентов этого рынка. Значимость инструментальных средств реального времени определяется не столько их бурным коммерческим успехом (хотя и это достойно тщательного анализа), но, в первую очередь, тем, что только с помощью подобных средств создаются стратегически значимые приложения в таких областях, как управление непрерывными производственными процессами в химии, фармакологии, производстве цемента, продуктов питания и т.п., аэрокосмические исследования, транспортировка и переработка нефти и газа, управление атомными и тепловыми электростанциями, финансовые операции, связь и многие другие. Классы задач, решаемых экспертными системами реального времени, таковы: мониторинг в реальном масштабе времени, системы управления верхнего уровня, системы обнаружения неисправностей, диагностика, составление расписаний, планирование, оптимизация, системы-советчики оператора, системы проектирования. Статические экспертные системы не способны решать подобные задачи, так как они не выполняют требования, предъявляемые к системам, работающим в реальном времени: 1. Представлять изменяющиеся во времени данные, поступающие от внешних источников, обеспечивать хранение и анализ изменяющихся данных. 2. Выполнять временные рассуждения о нескольких различных асинхронных процессах одновременно (т.е. планировать в соответствии с приоритетами обработку поступивших в систему процессов). 3. Обеспечивать механизм рассуждения при ограниченных ресурсах (время, память). Реализация этого механизма предъявляет требования к высокой скорости работы системы, способности одновременно решать несколько задач (т.е. операционные системы UNIX, VMS, Windows NT, но не MS-DOS). 4. Обеспечивать "предсказуемость" поведения системы, т.е. гарантию того, что каждая задача будет запущена и завершена в строгом соответствии с временными ограничениями. Например, данное требование не допускает использования в экспертной системе реального времени механизма "сборки мусора", свойственного языку Lisp. 5. Моделировать "окружающий мир", рассматриваемый в данном приложении, обеспечивать создание различных его состояний. 6. Протоколировать свои действия и действия персонала, обеспечивать восстановление после сбоя. 7. Обеспечивать наполнение базы знаний для приложений реальной степени сложности с минимальными затратами времени и труда (необходимо использование объектно-ориентированной технологии, общих правил, модульности и т.п.). 8. Обеспечивать настройку системы на решаемые задачи (проблемная/предметная ориентированность). 9. Обеспечивать создание и поддержку пользовательских интерфейсов для различных категорий пользователей. 10. Обеспечивать уровень защиты информации (по категориям пользователей) и предотвращать несанкционированный доступ. Подчеркнем, что кроме этих десяти требований средства создания экспертных систем реального времени должны удовлетворять и перечисленным выше общим требованиям.  

 
  
 

Основные производители

Инструментарий для создания экспертных систем реального времени  впервые выпустила фирма Lisp Machine Inc в 1985 году. Этот продукт предназначался для символьных ЭВМ Symbolics и носил название Picon. Его успех привел к тому, что группа ведущих его разработчиков образовала фирму Gensym, которая, значительно развив идеи, заложенные в Picon, выпустила в 1988 году инструментальное средство под названием G2. В настоящий момент работает его третья версия и подготовлена четвертая [1,7]. С отставанием от Gensym на два-три года ряд других фирм начал создавать (или пытаться создавать) свои инструментальные средства. Назовем ряд из них: RT Works (фирма Talarian, США), COMDALE/C (Comdale Techn., Канада), COGSYS (SC, США), ILOG Rules (ILOG, Франция). Сравнение двух наиболее продвинутых систем, G2 и RT Works, которое проводилось путем разработки одного и того же приложения двумя организациями, NASA (США) и Storm Integration (США) [10], показало значительное превосходство первой.

Генетические алгоритмы

Генетические алгоритмы - это одно из направлений исследований в области искусственного интеллекта, занимающееся созданием упрощенных моделей эволюции живых организмов для решения задач оптимизации.

Теория эволюции Дарвина  утверждает, что развитие любой биологической  особи заключается в целенаправленном изменении себя таким образом, чтобы лучше приспособиться к условиям окружающей среды. Приобретение животными защитной окраски, развитие у человека сложной и разветвленной нервной системы и многое другое – все это результат работы многолетнего процесса эволюции. Говоря языком математики, эволюция природы – это процесс оптимизации живых организмов.

Согласно теории Дарвина, естественный отбор – это основной механизм эволюции. Суть естественного отбора заключается в следующем: более приспособленные биологические особи имеют больше шансов для выживания и размножения, а значит, приносят больше потомства, чем остальные. Через механизмы генетического наследования потомки перенимают от своих родителей основные качества. Таким образом, потомки «сильных» биологических особей также будут более приспособленными по сравнению со своими сверстниками. Все это приводит к увеличению доли приспособленных особей в общей массе вида и спустя несколько сотен поколений общая приспособленность вида увеличится. Именно эта идея и лежит в основе генетических алгоритмов.

Для того, чтобы принцип работы генетических алгоритмов стал более прозрачен, необходимо более подробно остановиться на механизмах генетического наследования. Любая биологическая особь состоит из большого числа клеток, в каждой из которых хранится генетическая информация этой особи. Эта генетическая информация хранится в виде специального набора очень длинных молекул, получившего названия ДНК – дезоксирибонуклеиновой кислоты. Каждая молекула ДНК окружена оболочкой – такое образование называется хромосомой. Хромосомы состоят из генов. Каждый ген кодирует некоторое качество особи, например, цвет глаз или наследственные болезни. Различные значения гена называются его аллелями. При зачатии происходит взаимодействие двух родительских половых клеток, каждая из которых несет ДНК своего хозяина. Как правило, взаимодействие клеток заключается в делении ДНК на две части с последующим обменом этих половинок. Т.е. потомок наследует по половине ДНК от каждого родителя.

Впервые генетический алгоритм был предложен Джоном Холландом в 1975 году в Мичиганском университете. Его заинтересовал тот факт, что эволюционируют не сами живые существа, а хромосомы, из которых они состоят. В дальнейшем Холланд выдвинул несколько гипотез и теорий, помогающих лучше понять природу и принципы работы генетических алгоритмов.

Генетические алгоритмы  применяются при разработке программного обеспечения, в системах искусственного интеллекта, оптимизации, искусственных нейронных сетях и в других отраслях знаний.

Следует отметить, что с  помощью генетических алгоритмов успешно  могут решаться задачи, для которых  ранее использовались только нейронные  сети.

Сегодня становятся более  популярными методы решения задач, основанные на совместном использовании  нейронных сетей и генетических алгоритмов.

По мере развития генетических и эволюционных алгоритмов в течение  последних лет существенные различия между ними постепенно уменьшаются. Например, в настоящее время при реализации генетических алгоритмов для решения оптимизационных задач все чаще применяется представление хромосом действительными числами и различные модификации генетических операторов, что имеет целью повысить эффективность этих алгоритмов.

Модель бюджета  РФ

Независимый экспертный совет по стратегическому  анализу проблем внешней и  внутренней политики при Совете Федерации  НИИ искусственного интеллекта представил проект "Технология нового поколения  на основе недоопределенных вычислений и ее использование для разработки экспериментальной модели макроэкономики РФ". Появилась возможность просчитывать исход любого действия или предложения, касающегося бюджета страны, на много лет вперед.

Система позволяет видеть как изменится доходная часть, дефицит бюджета, объем промышленного производства в ответ, скажем, на увеличение налогов. Также можно посмотреть, сколько денег в прошлом году уплыло из бюджета: электронная машина, по уверению ученых, легко сможет справиться и с такой задачей. Ей даже не надо будет объяснять понятие "черный нал».

Можно решить и обратную задачу. Например, а что  надо сделать, чтобы к 2000 году объем  производства увеличился или, скажем, хотя бы не падал.  Машина укажет нижнюю и верхнюю границу значений в  том и другом случае для отпускаемых  бюджетных денег по всем параметрам, так или иначе влияющим на производство.

Кроме того, можно узнать не по гороскопу и  без помощи магов возможную последовательность "критических" и "удачных" моментов в развитии экономики страны при  заданных исходных данных.

Разработчики  проекта создали пока лишь демонстрационную модель, охватывающую около 300 параметров и период от 1990-го до 1999 года. Но для  нормальной работы необходимо не менее 1000 параметров. И такая работа может  быть проведена, если на нее будут  отпущены средства. Надо провести множество  прикладных работ, необходимы фундаментальные  исследования по обоим основным составляющим проекта - математической и экономической. Здесь нужна серьезная государственная  материальная поддержка.

Первый  опыт по применению данной технологии в экономическом моделировании  был проведен в 1987-1988 гг., когда НИИ ИИ вместе с Институтом экономики СО АН создал демонстрационную систему "Модель экономики СССР до 2000 года".

Внедрение действующей компьютерной модели макроэкономики и госбюджета РФ позволит автоматизировать подготовку исходных параметров госбюджета очередного года, согласование окончательного варианта для утверждения в парламенте, поддержку, оценку и контроль исполнения бюджета на всех его этапах. Экономический  эффект внедрения модели может оказаться  равным нескольким процентам ВВП.

 

Состояние и тенденции  развития искусственного интеллекта

Программные средства, базирующиеся на технологии и методах искусственного интеллекта, получили значительное распространение в мире. Их важность, и, в первую очередь, экспертных систем и нейронных сетей, состоит в том, что данные технологии существенно расширяют круг практически значимых задач, которые можно решать на компьютерах, и их решение приносит значительный экономический эффект. В то же время, технология экспертных систем является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки приложений; высокая стоимость сопровождения сложных систем; повторная используемость программ и т.п. Кроме того, объединение технологий экспертных систем и нейронных сетей с технологией традиционного программирования добавляет новые качества к коммерческим продуктам за счет обеспечения динамической модификации приложений пользователем, а не программистом, большей "прозрачности" приложения (например, знания хранятся на ограниченном естественном языке, что не требует комментариев к ним, упрощает обучение и сопровождение), лучших графических средств, пользовательского интерфейса и взаимодействия. По мнению специалистов, в недалекой перспективе экспертные системы будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг. Их технология, получив коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей. Коммерческий рынок продуктов искусственного интеллекта в мире в 1993 году оценивался примерно в 0,9 млрд. долларов; из них 600 млн. приходится на долю США. Выделяют несколько основных направлений этого рынка: 1) экспертные системы; теперь их часто обозначают еще одним термином - "системы, основанные на знаниях"; 2) нейронные сети и "размытые" (fuzzy) логики; 3) естественно-языковые системы. В США в 1993 году рынок между этими направлениями распределился так [2]: экспертные системы - 62%, нейронные сети - 26%, естественно-языковые системы - 12%. Рынок этот можно разделить и иначе: на системы искусственного интеллекта (приложения) и инструментальные средства, предназначенные для автоматизации всех этапов существования приложения. В 1993 году в общем объеме рынка США доля приложений составила примерно две, а доля инструментария - примерно одну треть.

Одно из наиболее популярных направлений последних пяти лет  связано с понятием автономных агентов. Их нельзя рассматривать как "подпрограммы", - это скорее прислуга, даже компаньон, поскольку одной из важнейших их отличительных черт является автономность, независимость от пользователя. Идея агентов опирается на понятие делегирования своих функций. Другими словами, пользователь должен довериться агенту в выполнении определенной задачи или класса задач. Всегда существует риск, что агент может что-то перепутать, сделать что-то не так. Следовательно, доверие и риск должны быть сбалансированными. Автономные агенты позволяют существенно повысить производительность работы при решении тех задач, в которых на человека возлагается основная нагрузка по координации различных действий.

В том, что касается автономных (интеллектуальных) агентов, хотелось бы отметить один весьма прагматический проект, который сейчас ведется под руководством профессора Генри Либермана в Media-лаборатории MIT (MIT Media Lab). Речь идет об агентах, отвечающих за автоматическое генерирование технической документации. Для решения этой задачи немало сделал в свое время академик Андрей Петрович Ершов, сформулировавший понятие деловой прозы как четко определенного подмножества естественного языка, которое может быть использовано, в частности, для синтеза технической документации (это одно из самых узких мест в любом производстве). Группа под руководством профессора Либермана исследует возможности нового подхода к решению этой проблемы, теперь уже на основе автономных агентов.

Успехи систем искусственного интеллекта и их причины

Использование экспертных систем и нейронных сетей приносит значительный экономический эффект. Так, например: - American Express сократила свои потери на 27 млн. долларов в год благодаря экспертной системе, определяющей целесообразность выдачи или отказа в кредите той или иной фирме; - DEC ежегодно экономит [1] 70 млн. долларов в год благодаря системе XCON/XSEL, которая по заказу покупателя составляет конфигурацию вычислительной системы VAX. Ее использование сократило число ошибок от 30% до 1%; - Sira сократила затраты на строительство трубопровода в Австралии на 40 млн. долларов за счет управляющей трубопроводом экспертной системы, реализованной на базе описываемой ниже системы G2. Коммерческие успехи к экспертным системам и нейронным сетям пришли не сразу. На протяжении ряда лет (с 1960-х годов) успехи касались в основном исследовательских разработок, демонстрировавших пригодность систем искусственного интеллекта для практического использования. Начиная примерно с 1985 (а в массовом масштабе, вероятно, с 1988-1990 годов), в первую очередь, экспертные системы, а в последние два года и нейронные сети стали активно использоваться в реальных приложениях. Причины, приведшие системы искусственного интеллекта к коммерческому успеху, следующие:

Информация о работе Искусственный интеллект