Структурная и функциональная организация клетки как целостной живой системы

Автор работы: Пользователь скрыл имя, 13 Января 2012 в 16:44, курсовая работа

Описание

Клетка — основная структурная и функциональная единица жизни, ограниченная полупроницаемой мембраной и способная к самовоспроизведению. Клетки разных живых организмов имеют свои отличительные особенности. Как известно, все организмы делят на прокариоты, клетки которых не имеют оформленного ядра, и эукариоты, клетки которых обязательно содержат ядро. Существенные различия в структуре имеются и у клеток, входящих в состав одного и того же организма.

Содержание

Введение………………………………………………………………….……..…4
Обзор литературы:
1. Строение растительной клетки…………………………………..……………5
1.1. Клеточная оболочка……………………………………………………….…6
1.2. Цитоплазма………………………………………………………………..…12
1.2.1. Рибосомы…………………………………………………………………13
1.2.2. Мембраны………………………………………………………...………15
1.2.3. Эндоплазматическая сеть…………………………………………...…..18
1.2.4. Аппарат Гольджи……………………………………………………...…20
1.2.5. Вакуоль……………………………………………………………...……20
1.2.6. Лизосомы…………………………………………………………………21
1.2.7. Микротельца………………………………………………………….….22
1.3. Пластиды………………………………………………………………….....23
1.3.1. Хлоропласты…………………………………………………….……….23
1.3.2. Генетический аппарат хлоропластов………………………………..….25
1.4. Митохондрии…………………………………………………………….….27
1.5. Ядро……………………………………………………………………….…31
2. Физиология растительной клетки……………………………………………33
2.1. Раздражимость…………………………………………………………...….33
2.2. Репликация, транскрипция, трансляция………………………………..….35
2.3. Регуляция ферментативной активности клетки…………………………..42
2.4. Поступление воды в растительную клетку……………………………..…46
2.4.1. Диффузия и осмос…………………………………………………….…46
2.4.2. Клетка как осмотическая система………………………………………49
2.5. Поступление ионов в растительную клетку…………………………..…..54
2.6. Фотосинтез………………………………………………………….……….58
3. Заключение……………………………………………………………….……62
4. Список литературы……………………………………………………………63

Работа состоит из  1 файл

Клеточная оболочка.doc

— 318.00 Кб (Скачать документ)

       Схема синтеза полипептидной цепи в рибосоме (по В. В. Полевому).

     В заключение можно  сказать, что из поколения  в поколение передаются молекулы ДНК, которые  несут в себе информацию о составе белковых молекул. План построения белка записан в ДНК с помощью триплетного кода, представленного чередованием азотистых оснований. Под влиянием внешних условий или спонтанно ДНК может изменяться. Эти изменения могут быть полезными, бесполезными и вредными. Полезные изменения, дающие организмам преимущество в борьбе за существование, могут закрепляться по наследству в ходе естественного или искусственного отбора.

     Возникающие в процессе трансляции белки являются полимерами, мономерами которых  служат аминокислоты. Белки представляют собой цепочки остатков аминокислот, соединенных между собой пептидными связями. Молекулярная масса белков зависит от количества мономеров и колеблется от нескольких тысяч до миллионов. Разнообразие белков определяется различной последовательностью аминокислотных остатков. Белки, также как и аминокислоты – амфотерные соединения, то есть имеют положительный и отрицательные заряды. У каждого белка своя изоэлектрическая точка – значение рН, при которой молекула белка не имеет заряда.

     Молекула  белка имеет первичную, вторичную, третичную и четвертичную структуру. Первичная структура определяется последовательностью аминокислотных остатков в белковой молекуле. Между аминокислотами, входящими в полипептидную цепочку, возможны водородные и другие связи. В результате этого полипептидная цепочка приобретает особенное расположение в пространстве, чаще всего в виде спирали. Это вторичная структура. По конформации полипептидной цепи различают фибриллярные и глобулярные белки. Фибриллярные белки сохраняют вытянутую форму спирали. У глобулярных белков спираль сворачивается в шарообразную глобулу, которая представляет собой третичную структуру белка. Она поддерживается кроме водородных связей гидрофобными взаимодействиями и дисульфидными связями, возникающими между двумя сульфгидрильными (SH) группами. Белки могут состоять из нескольких полипептидных цепочек и их взаимное расположение в пространстве и вокруг друг друга представляет собой четвертичную структуру. 

     2.3.  Регуляции ферментативной активности в клетке

     Химические  процессы в клетке протекают с большой  скоростью благодаря  действию биологических  катализаторов –  ферментов или  энзимов. Белковую часть  фермента называют апоферментом. Небелковый компонент, прочно связанный, называют простетической группой, слабо связанный, обслуживающий несколько ферментов – коферментом. В состав простетических групп и коферментов входят металлы (железо, медь, цинк), витамины и их производные. Эндоферменты функционируют в клетке, а экзоферменты выделяются из клетки или локализуются в плазмалемме и действуют снаружи от нее.

     Ферменты  обладают специфичностью как к субстратам (субстратная  специфичность), так  и к определенным химическим реакциям (специфичность  действия). Названия ферментов обычно заканчиваются суффиксом “аза”, за исключением некоторых общепринятых названий, например, пепсин, трипсин и другие. Название, как правило, отражает природу субстрата (хитиназа расщепляет хитин), или функцию фермента (аминотрансфераза переносит аминогруппы), или же то и другое вместе (алкогольдегидрогеназа). Ферменты разделяют на 6 классов: 1) оксиредуктазы – катализируют окислительно-восстановительные реакции, 2) трансферазы – перенос целых атомных группировок от одного соединения к другому, 3) гидролазы – распад органических соединений с участием воды, 4) лиазы – присоединение какой-либо атомной группировки к органическим соединениям или отщепление от субстратов определенной группы без участия воды, 5) изомеразы – превращение одних изомеров в другие, 6) лигазы или синтетазы – синтез органических соединений, происходящий при участии АТФ с использованием энергии этой кислоты.

     Ферменты, катализирующие одну и ту же реакцию  и встречающиеся  у одного организма, но различающиеся  по своим физико-химическим свойствам (например, по электрофоретической подвижности, следовательно, по молекулярной массе и заряду)  называют изоферментами или изозимами. Наличие изоферментов позволяет организмам лучше приспосабливаться к меняющимся условиям внешней среды.

     Катализ осуществляется в результате образования фермент-субстратного комплекса, что приводит к сближению реагирующих молекул или созданию напряженных химических связей путем их растягивания. Субстрат должен соответствовать активному центру не только пространственно, но и по распределению зарядов, расположению групп атомов и так далее. Окончательная подгонка происходит лишь в процессе взаимодействия субстрата с ферментом, претерпевающим при этой реакции конформационные изменения. Продукты реакции отделяются от фермента и молекулы фермента регенерируются. Благодаря своей способности регенерироваться, то есть возвращаться к первоначальному состоянию, одна и та же молекула фермента может катализировать большой объем превращений.

     Скорость  и направленность ферментативных реакций в клетке зависит от количества фермента, температуры и рН. Как всякая химическая реакция, ферментативные реакции зависят от температуры, что принято оценивать величиной температурного коэффициента (Q10), который показывает во сколько раз данный процесс ускоряется при повышении температуры на 10 Со. Поскольку ферменты являются белками, то повышение температуры свыше 35-40 Со вызывает их частичную инактивацию, а дальнейшее повышение температуры приводит уже к необратимой денатурации. У каждого фермента имеется свой оптимум рН, при котором лучше всего проявляется его активность. Это связано с тем, что рН влияет на заряд функциональных групп фермента, составляющих его активный центр, а от заряда зависит возможность образования фермент-субстратного комплекса.

     Известны  следующие механизмы  внутриклеточной  регуляции функционирования ферментов:

     1. Метаболитная регуляция. Она происходит в результате изменения концентрации метаболитов и не затрагивает активность или число ферментных молекул. Различают регуляцию в местах разветвления путей обмена веществ и регуляцию по принципу обратной связи. В первом случае ферменты конкурируют за один и тот же субстрат и выбор пути определяется концентрацией общего для конкурирующих ферментов субстрата и степенью сродства фермента к субстрату. Под обратной связью понимается влияние более позднего члена цепи взаимосвязанных реакций на более ранний.

     2. Ферментная регуляция. При этом типе регуляции изменяется активность ферментов. Изменение ферментативной активности может осуществляться несколькими путями: а) Обратимое или необратимое превращение неактивных предшественников ферментов – зимогенов в активные ферменты. Например, b-амилаза инактивирована в запасающих клетках эндосперма семян злаков из-за соединения с запасными белками посредством дисульфидных связей ( -S-S-). К началу прорастания семян из живых клеток алейронового слоя в эндосперм поступают вещества, разрушающие дисульфидные связи. Активированная b-амилаза принимает участие в гидролизе запасного крахмала; б) Изменение активности фермента под влиянием эффекторов. Связываясь с ферментом, эффекторы могут повышать его активность – это положительные эффекторы – активаторы или уменьшать ее – это отрицательные эффекторы – ингибиторы. Эффектор может влиять на активность фермента, взаимодействуя с активным центром (изостерический эффект) или изменяя конформацию ферментной молекулы в результате связывания с ее аллостерическим центром (аллостерический эффект). Изостерический эффект происходит в том случае, когда эффектор и субстрат похожи по своему строению и конкурируют друг с другом за активный центр фермента. Такой тип ингибирования называют конкурентным ингибированием.

     3. Генная регуляция. В этом случае изменяется количество ферментных молекул в клетке из-за включения или выключения синтеза ферментов. Регулирующие факторы действуют на ДНК, РНК или рибосомы.

     4. Мембранная регуляция. Различают контактную и дистанционную мембранную регуляцию активности ферментов. Контактная регуляция – связывание ферментов с мембранами или их освобождение меняет их активность. Дистанционная мембранная регуляция активности ферментов осуществляется косвенным путем в результате транспорта через мембраны субстратов и коферментов, удаления продуктов реакции, ионных и рН сдвигов в компартментах клетки. 

     2.4. Поступление воды в растительную клетку

     Для осуществления всех процессов жизнедеятельности  в клетку из внешней  среды должны поступать  вода и питательные  вещества. Вода прямо  или косвенно участвует  во всех реакциях обмена и является важнейшей  составной частью растительной клетки.

          2.4.1. Диффузия и осмос

     При температуре выше абсолютного нуля все молекулы находятся  в постоянном беспорядочном  движении. Это показывает, что они обладают определенной кинетической энергией. Благодаря  постоянному движению при смешении двух жидкостей или двух газов их молекулы равномерно распределяются по всему доступному объему. Диффузия — это процесс, ведущий к равномерному распределению молекул растворенного вещества и растворителя. Как всякое движение, диффузия требует энергии. Диффузия всегда направлена от большей концентрации данного вещества к меньшей, от системы, обладающей большей свободной энергией, к системе с меньшей свободной энергией. Свободной энергией называется часть внутренней энергии системы, которая может быть превращена в работу. Свободная энергия, отнесенная к 1 молю вещества, носит название химического потенциала. Таким образом, химический потенциал — это мера энергии, которую данное вещество использует на реакции или движение. Химический потенциал — функция концентрации. Скорость диффузии зависит от температуры, природы вещества и разности концентраций. Чем выше концентрация данного вещества, тем выше его активность и его химический потенциал. Диффузионное передвижение вещества всегда идет от большего к меньшему химическому потенциалу. Наибольший химический потенциал у чистой воды. Добавление к воде молекул растворенного вещества приводит к возникновению связи между молекулами воды и растворенного вещества, что уменьшает ее активность, ее свободную энергию, ее химический потенциал. В том случае, если диффундирующие вещества встречают на своем пути мембрану, движение замедляется, а в некоторых случаях прекращается. Диффузия воды по направлению от своего большего к меньшему химическому потенциалу через мембрану носит название осмоса. Иначе говоря, осмос — это диффузия воды или другого растворителя через полупроницаемую перепонку, вызванная разностью концентраций или разностью химических потенциалов. Осмос — результат неравенства химических потенциалов воды по разные стороны мембраны.

     Идеальная полупроницаемая мембрана пропускает молекулы воды и не пропускает молекулы растворенного вещества. В 1877 г. немецкий физиолог В. Пфеффер приготовил искусственную полупроницаемую мембрану. Для этого в пористый фарфоровый сосуд наливали раствор медного купороса и помещали в другой сосуд, заполненный раствором ферроцианида калия. В порах первого фарфорового сосуда растворы соприкасались и реагировали друг с другом. В результате в порах образовалась пленка из ферроцианида меди Cu2[Fe (CN)6], которая обладала полупроницаемостью. Таким образом, была создана как бы модель клетки: полупроницаемая пленка имитировала мембрану, а стенки сосуда — пектоцеллюлозную оболочку. Сосуд, в порах которого образовалась полупроницаемая мембрана, заполненный раствором сахарозы, помещали в воду. Такой прибор получил название осмометра. Химический потенциал воды во внутреннем сосуде будет тем меньше, чем выше концентрация сахарозы. Таким образом, поступление воды в раствор через полупроницаемую перегородку обусловливается разностью между свободной энергией чистой воды и раствора, происходит самопроизвольно по градиенту свободной энергии воды.

  В осмометре при наличии полупроницаемой мембраны вода будет поступать в раствор, что приведет к его разбавлению, и движение воды будет замедляться. Если к осмометру присоединить трубку, раствор будет подниматься по ней. Наконец давление столба жидкости уравновесит силу, с которой молекулы воды поступают в осмометр. Таким образом, энергия молекул воды, которая уменьшилась благодаря введению растворенного вещества, восполнится давлением столба жидкости. Это давление повышает химический потенциал раствора (Iр), делая его равным химическому потенциалу чистой воды (I в).

  Согласно закону термодинамики самопроизвольно идут только процессы, сопровождающиеся выделением энергии. В большинстве случаев измерить свободную энергию в абсолютном выражении не представляется возможным. Однако можно измерить разность между конечным (g2) и начальным энергетическим состоянием (g,). Поскольку gl > g2, то изменение Ag будет иметь отрицательное значение. В нашем случае gi — это химический потенциал чистой воды, a g2 — химический потенциал воды после добавления растворенного вещества. Ag будет равно, но противоположно по знаку тому давлению, которое надо приложить к системе, чтобы предотвратить поступление в него воды через полупроницаемую мембрану. Ag и будет осмотический потенциал (чРосм) раствора.

Информация о работе Структурная и функциональная организация клетки как целостной живой системы