Значение воды для жизни организма

Автор работы: Пользователь скрыл имя, 22 Февраля 2012 в 20:35, контрольная работа

Описание

Вода занимает особое место в организме. Жизнь первично зародилась в жидкой среде, поэтому несмотря на то, что многие животные организмы далеко ушли от своих предков в плане эволюционного совершенствования, вода остается существенным компонентом всех живых организмов. Благодаря большому дипольному моменту, высокой диэлектрической постоянной вода является хорошим растворителем многих веществ, легко диссоциирующих в водных растворах. Без воды невозможно существование жизни, ибо только в ее присутствии протекает большое число биохимических реакций (реакции гидролиза сложных органических соединений), молекулы воды могут образоваться в результате реакций окисления белков, жиров и углеводов.

Содержание

Вопрос 5. Значение воды для жизни организма.
Вопрос 11. Составить формулу полипептида из следующих аминокис-лот: аланин, лизин, треонин, цистеин, глицин.
Вопрос 28. Химическая природа ферментов. Привести примеры одно- и двухкомпонентных ферментов.
Вопрос 39. Значение АТФ для живого организма. Приведите формулы АТФ, укажите макроэргические связи.
Вопрос 48. Приведите в кетонной и циклической формах строение фруктозы, где встречается этот моносахарид?
Вопрос 57. Понятие о витаминах, их роль в живом организме.
Вопрос 63. Авитаминоз и гиповитаминоз. Охарактеризовать витами-ны А и Е и указать их роль в организме.
Вопрос 79. Сущность анаэробного окисления углеводов (гликолиз).
Вопрос 88. Обмен нуклеиновых кислот в организме.
Вопрос 95. Гормоны половых желез, их назначение.

Работа состоит из  1 файл

контрольная работа по биохимии.doc

— 176.50 Кб (Скачать документ)


План работы

 

Вопрос 5. Значение воды для жизни организма.

Вопрос 11. Составить формулу полипептида из следующих аминокислот: аланин, лизин,  треонин, цистеин, глицин.

Вопрос 28. Химическая природа ферментов. Привести примеры одно- и двухкомпонентных ферментов.

Вопрос 39. Значение АТФ для живого организма. Приведите формулы АТФ, укажите макроэргические связи.

Вопрос 48. Приведите в кетонной и циклической формах строение фруктозы, где встречается этот моносахарид?

Вопрос 57. Понятие о витаминах, их роль в живом организме.

Вопрос 63. Авитаминоз и гиповитаминоз. Охарактеризовать витамины А и Е и указать их роль в организме.

Вопрос 79. Сущность анаэробного окисления углеводов (гликолиз).

Вопрос 88. Обмен нуклеиновых кислот в организме.

Вопрос 95. Гормоны половых желез, их назначение.


Вопрос 5. Значение воды для жизни организма.

 

Вода занимает особое место в организме. Жизнь первично зародилась в жидкой среде, поэтому несмотря на то, что многие животные организмы далеко ушли от своих предков в плане эволюционного совершенствования, вода остается существенным компонентом всех живых организмов. Благодаря большому дипольному моменту, высокой диэлектрической постоянной вода является хорошим растворителем многих веществ, легко диссоциирующих в водных растворах. Без воды невозможно существование жизни, ибо только в ее присутствии протекает большое число биохимических реакций (реакции гидролиза сложных органических соединений), молекулы воды могут образоваться в результате реакций окисления белков, жиров и углеводов.

Вода – важнейшая составная часть живых организмов, она составляет значительную часть массы животного организма. На ее долю в организме теплокровных животных приходится 65-70%, в растениях (листья, стебли, плоды, овощи, клубни, корни)  75-95%, в покоящихся семенах растений  5-15%. Вода играет огромную роль в создании условий для жизнедеятельности. Она основной участник всех физико-химических процессов организма, обеспечивающих функционирование и возобновление живого.

Из организма человека и животных выделяется всегда несколько больше воды, чем поступает в него (на 200-300 мл/сут). Это связано с образованием в нем эндогенной воды как продукта окисления органических веществ.

Вода выполняет в организме важную транспортную функцию (доставляет к работающим органам и тканям питательные вещества, удаляет из них конечные продукты обмена органических веществ).

В животном организме вода может находиться в различном состоянии: в связанном виде как составная часть тканей организма (гидратационная вода) и в свободном виде (вода плазмы крови, лимфы и тканевой жидкости).

В качестве депо воды выступают многие ткани организма, в особенности подкожная клетчатка.


 


Вопрос 11. Составить формулу полипептида из следующих аминокислот: аланин, лизин,  треонин, цистеин, глицин.

 

 

 

          NH2  O     H                                  NH2 O   H

          |       ||      |                                  |        ||     |

CH3 –CH – C ~ N – (CH2)4 – CH – C ~ N      O    H

                                                                                    |         ||     |

                                                        CH3 – CH – CH – C ~ N                 O   H

                                                                        |                                 |                  ||     |

                                                                      OH                  CH2 – CH – C ~ N

                                                                                                                          |             

                                                                                    CH3 – CH – CH2 – CHCOOH

                                                                                                  |

                                                                                                  CH3

 

 

Первичная структура белка с образованием пептидных связей


Вопрос 28. Химическая природа ферментов. Привести примеры одно- и двухкомпонентных ферментов.

 

Химическая природа важнейших коферментов была выяснена в 30-е годы нашего столетия благодаря трудам О. Варбурга, Р. Куна, П. Каррера и др. Оказалось, что роль коферментов в двухкомпонентных ферментах играют большинство витаминов (Е, К, Q, В1, В2, В6 В12, С, Н и др.) или соединений, построенных с участием витаминов (коэнзим А, НАД+ и т. п.). Кроме того, функцию коферментов выполняют такие соединения, как НS-глутатион, многочисленная группа нуклеотидов и их производных, фосфорные эфиры некоторых моносахаридов и ряд других веществ.

Характерной особенностью двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. При этом белок резко повышает каталитическую активность добавочной группы, присущую ей в свободном состоянии в очень малой степени; добавочная же группа стабилизирует белковую часть и делает ее менее уязвимой к денатурирующим агентам. Таким образом, хотя непосредственным исполнителем каталитической функции является простетическая группа, образующая каталитический центр, ее действие немыслимо без участия полипептидных фрагментов белковой части фермента. Более того, в апоферменте есть участок, характеризующийся специфической структурой, избирательно связывающий кофермент. Это так называемый кофермент связывающий домен; его структура у различных апоферментов, соединяющихся с одним и тем же коферментом, очень сходна. Таковы, например, пространственные структуры нуклеотидсвязывающих доменов ряда дегидрогеназ.

Иначе обстоит дело у однокомпонентных ферментов, не имеющих добавочной группы, которая могла бы входить в непосредственный контакт с преобразуемым соединением. Эту функцию выполняет часть белковой молекулы, называемая каталитическим центром. Предполагают, что каталитический центр однокомпонентного фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, располагающихся в определенной части белковой молекулы.

В качестве примера однокомпонентный ферментов можно назвать альдолазу, трипсин. Уреаза была одним из первых белков-ферментов, полученным в кристаллическом состоянии. Это однокомпонентный фермент (М=480000), молекула его глобулярна и состоит из 8 равных субъединиц. Уреаза ускоряет гидролиз мочевины до NН3 и СО2.

Сложные или двухкомпонентные ферменты принято обозна­чать также термином холофермент. Состоят из белковой части – апофермента и небелковой части – кофактора, либо кофермента. Примером сложных ферментов могут служить аминотрансферазы, лактатдегидрогеназа, пероксадаза.


Вопрос 39. Значение АТФ для живого организма. Приведите формулы АТФ, укажите макроэргические связи.

 

В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержится аденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, избавляется от отходов, осуществляет активный транспорт веществ, биение жгутиков и ресничек и т. д.

Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями:

Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) н высвобождается порция энергии:

АДФ также может подвергаться дальнейшему гидролизу с отщеплением еще одной фосфатной группы и выделением второй порции энергии; при этом АДФ преобразуется в аденозин-монофосфат (АМФ), который далее не гидролизуется:

АТФ образуется из АДФ и неорганического фосфата за счет энергии, освобождающейся при окислении органических веществ и в процессе фотосинтеза. Этот процесс называется фосфорилированием. При этом должно быть затрачено не менее 40 кДж/моль энергии, которая аккумулируется в макроэргических связях:

Следовательно, основное значение процессов дыхания и фотосинтеза определяется тем, что они поставляют энергию для синтеза АТФ, с участием которой в клетке выполняется большая часть работы.

Таким образом, АТФ — это главный универсальный поставщик энергии в клетках всех живых организмов.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.

 

 

 


Вопрос 48. Приведите в кетонной и циклической формах строение фруктозы, где встречается этот моносахарид?

 

Фруктоза имеет молекулярную формулу (С6Н12О6), является полиоксикетоном. Молекула фруктозы содержит три асимметрических атома углерода, причем конфигурация у них такая же, как и у соответствующих атомов в молекуле глюкозы. Фруктоза – изомер и «близкий родственник» глюкозы. Она хорошо растворима в воде, имеет сладкий вкус (примерно в 3 раза слаще глюкозы).

Фруктоза также наиболее часто встречается в циклических формах. В водных растворах фруктозы имеет место равновесие:

В молекуле фруктозы установлено наличие 5 спиртовых групп, но при энергичном окислении фруктоза образует две оксикислоты с двумя и четырьмя атомами углерода. Такое поведение характерно для кетонов. Таким образом, фруктоза — многоатомный кетоноспирт:

В природе глюкоза и фруктоза (наряду с другими моносахаридами) образуются в результате реакции фотосинтеза:


Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде. Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза — ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С). При окислении фруктоза дает винную и щавелевую кислоту.


Вопрос 57. Понятие о витаминах, их роль в живом организме.

 

В составе пищи, которую мы едим, содержаться различные вещества, необходимые для нормальной работы всех органов, способствующие укреплению организма, исцелению, а также наносящие вред здоровью. К незаменимым, жизненно важным компонентам питания наряду с белками, жирами и углеводами относятся витамины. 

Слово «витамин» происходит от латинского слова «vita», означающего «жизнь».

Основное их количество поступает в организм с пищей, и только некоторые синтезируются в кишечнике обитающими в нём полезными микроорганизмами, однако в этом случае их бывает не всегда достаточно. Многие витамины быстро разрушаются и не накапливаются в организме в нужных количествах, поэтому человек нуждается в постоянном поступлении их с пищей.

Все жизненные процессы протекают в организме при непосредственном участии витаминов. Витамины входят в состав более 100 ферментов, запускающих огромное число реакций, способствуют поддержанию защитных сил организма, повышают его устойчивость к действию различных факторов окружающей среды, помогают приспосабливаться к ухудшающейся экологической обстановке. Витамины играют важнейшую роль в поддержании иммунитета, т.е. они делают наш организм более устойчивым к болезням.

Витамин – это органический состав, необходимый в крошечных количествах для незаменимых метаболических реакций в живом организме. Термин «витамин» не включает в себя другие существенные питательные вещества, такие как диетические минералы, незаменимые жирные кислоты, или незаменимые аминокислоты, и при этом термин также не охватывает большое количество других питательных веществ, которые заботятся о здоровье, но не жизненно важны. 

Витамины являются активными веществами, ежедневное употребление которых обуславливает слаженную работу всего организма.

В отличие от питательных веществ, витамины не поставляют энергию. В организм человека витамины поступают преимущественно с пищей или же синтезируются бактериями, обитающими в кишечнике. Основным источником витаминов являются растения, однако они содержатся также и в продуктах животного происхождения, например, в мясе (в особенности во внутренностях, т.е. потрохах), яйцах и молочных продуктах. Некоторые витамины встречаются в природе в форме так называемых провитаминов, другие входят в состав коэнзимов.

 

Витамины – это биомолекулы, которые действуют и как катализаторы, и как субстраты (носители катализаторов) в химических реакциях. Когда витамины действуют как катализаторы, их относят к ферментам и называют совместно действующими факторами. Например, витамин K является частью протеаз, вовлеченных в свертывание крови. Витамины также действуют как коэнзимы, пронося радикалы и химические группы между ферментами. Например, фолиевая кислота проводит различные формы углеродистой группы – метила, формила и метилена - в клетку. 

Витамины играют важную роль как антиоксиданты. В организме человека витамины не синтезируются, за исключением витамина D, который через ряд промежуточных стадий вырабатывается в организме под воздействием солнечных лучей. Прочие витамины должны поступать с пищей. Недостаток их в пище ведет к дефицитным состояниям и тем самым провоцирует различные заболевания. Передозировка витаминов также опасна. К типичным заболеваниям, вызываемым дефицитом витаминов, относятся скорбут (цинга), бери-бери (авитаминоз В1), пеллагра, анемия и рахит.

Информация о работе Значение воды для жизни организма