Актиноиды

Автор работы: Пользователь скрыл имя, 08 Мая 2013 в 14:25, курсовая работа

Описание

Цель: изучить физические и химические свойства актиноидов ,их распространенность в природе, основные соединения и практическое значение

Содержание

Введение……………………………………………………………...…………... 2
Глава 2. История открытия элементов…………………………………………2
Глава 3. Изотопы………………………………………………………………..5
Глава 4. Распространение в природе………………………………………….8
Глава 5. Получение……………………………………………………………..10
Глава 6. Cвойства………………………………………………………………15
§6.1.Физические свойства………………………………………………..15
§6.2.Химические свойства……………………………………………….18
Глава 7. Соединения……………………………………………………………21
§7.1.Оксиды и гидроксиды………………………………………………21
§7.2.Соли кислот………………………………………............................25
Глава 8. Применение…………………………………………………………..26
Глава 9. Токсичность…………………………………………………………..29
Заключение………………………….………………………………………….34
Список литературы……………………………………………………………..35

Работа состоит из  1 файл

kursovaya_Актиноиды.docx

— 378.54 Кб (Скачать документ)

           Для берклия известно 14 его изотопов с массовыми числами 238—252. Единственный доступный из них в больших количествах — 249Bk имеет сравнительно малый период полураспада (330 дней) и испускает в основном мягкие β-частицы, неудобные для регистрации. У него имеется также слабое альфа-излучение (1,45·10−3 % по отношению к β-излучению), которое иногда используется для определения этого изотопа. Известен долгоживущий изотоп берклия-247 с периодом полураспада 1380 лет, имеющий альфа-излучение, но пока он не получен в весовых количествах. Образование изотопа при нейтронном облучении плутония не происходит из-за β-стабильности изотопов кюрия с массовым числом меньше 248.

Изотопы калифорния с массовыми числами 237—256 образуются в ядерном реакторе, как и другие. Изотоп калифорния-253 является β-излучателем, а все остальные — α-излучателями. Кроме того, изотопы с чётными массовыми числами (250Cf, 252Cf и 254Cf) характеризуются большой скоростью спонтанного деления, особенно изотоп калифорния-254, у которого 99,7 % распадов происходит путём спонтанного деления. Стоит отметить изотоп калифорния-249, который обладает довольно большим периодом полураспада (352 года) и слабым спонтанным делением. У этого изотопа имеется и сильное γ-излучение, которое может значительно облегчить его идентификацию. Изотоп 249Cf не получается в больших количествах в ядерном реакторе вследствие медленного β-распада материнского изотопа 249Bk и большого сечения взаимодействия с нейтронами, однако он может быть накоплен в изотопически чистом виде как продукт β-распада предварительно выделенного 249Bk. Калифорний, выделенный из облучённого в реакторе плутония, содержит в основном изотопы 250Cf и 252Cf (при большом интегральном потоке нейтронов преобладает 252Cf), и работа с ним затруднена из-за мощного нейтронного излучения.

 

Таблица: Характеристики некоторых равновесных пар изотопов ТПЭ

Материнский изотоп

Дочерний изотоп

ВУРР

243Am

7370 лет

239Np

2,35 дня

47,3 дня

245Cm

8265 лет

241Pu

14 лет

129 лет

247Cm

1,64·107 лет

243Pu

4,95 часа

7,2 дня

254Es

270 дней

250Bk

3,2 часа

35,2 часа

255Es

39,8 дня

255Fm

22 часа

5 дней

257Fm

79 дней

253Cf

17,6 дня

49 дней


 

         Известно 16 изотопов изотопов эйнштейния с массовыми числами от 241 до 257. Наиболее доступным из его изотопов является 253Es — α-излучатель с периодом полураспада 20,47 дней, имеющий относительное слабое γ-излучение и небольшую по сравнению с изотопами калифорния скорость спонтанного деления. При более длительном облучении в реакторе образуется также долгоживущий 254Es (T½=275,5 дней).

           Из изотопов фермия известно 19 нуклидов с массовыми числами от 242—260. Изотопы 254Fm, 255Fm, 256Fm являются α-излучателями с короткими периодами полураспада (часы) и поэтому могут быть выделены в весовых количествах. Но при более длительном и мощном облучении можно, по-видимому, ожидать накопления заметных количеств долгоживущего изотопа фермия-257 (T½=100 дней). Все изотопы фермия, в том числе и 257Fm, характеризуются очень большими скоростями спонтанного деления.

         Для менделевия известно 15 нуклидов с массовыми числами от 245 до 260. Все исследования свойств изотопов менделевия проводились с 256Md, который распадается главным образом путём электронного захвата (α-излучение ≈ 10 %) с периодом полураспада 77 минут. Известен долгоживущий изотоп 258Md (T½=53 дня), он также является альфа-излучателем. Оба эти изотопа получают из изотопов эйнштейния (соответственно 253Es и 255Es), поэтому возможность получения изотопов менделевия ограничивается количеством имеющегося эйнштейния.

            Долгоживущие изотопы нобелия имеют малые периоды полураспада; по аналогии, все последующие после актиноидов элементы имеют все меньшие (местами) периоды полураспада. Для этого элемента известно 11 его нуклидов с массовыми числами от 250 до 260, и 262. Изучение химических свойств нобелия и лоуренсия проводились с изотопами 255No (T½=3 мин.) и 256Lr (T½=35 сек.). Наиболее долгоживущий 259No (Т½≈1,5 часа) синтезирован в 1970 году в городе Оук-Ридж, США.

 

Глава 4.Распространение в природе

 

         Торий и уран имеют самую высокую распространённость среди актиноидов; их атомные кларки равны 3·10−4 % и 2·10−5 % соответственно. В земной коре уран встречается в виде минеральной формы уранинита — U3O8 (смоляная руда, урановая смолка), а также карнотита — KUO2VO4·3H2O, отенита — Ca(UO2)2(PO4)2·nH2O и др. Два последних минерала имеют жёлтый цвет. Уран содержится также почти во всех минеральных формах редкоземельных минералов (фергюсонит, самарскит, эвксенит и др.).

         Уран в природе встречается в виде изотопов 238U (99,2739 %), 235U (0,7204 %) и 234U (0,0057 %). Из них 238U имеет наибольший период полураспада (T½ = 4,51·109 лет).

       Уран принадлежит к числу редких и рассеяных элементов. Содержание в земной коре урана составляет примерно 2·10−4 %. Общие запасы урана исчисляются миллионами тонн. Из минеральных форм урана известно около 200 минералов, большинство из них относится к оксидам переменного состава.

         Наиболее богатыми торием минералами являются торианит (ThO2), торит (ThSiO4), монацит, шералит ((Th, Ca, Ce)(PO4,SiO4)), торогумит (Th(SiO4)1−x(OH)4x). Торий, также как и уран, сопровождается с минеральными формами почти всех редкоземельных элементов. Богатые месторождения монацитовых песков находятся в Индии, Бразилии, Австралии, Африке, Канаде, США и на Цейлоне.

            Распространение актиния в земной коре очень мало (атомный кларк 5·10−15 %). Подсчитано, что общее распространение актиния в земной коре составляет 2600 т, в то время как, например, содержание радия равно 40 млн. т. Актиний содержится в таких природных материалах, как сульфидные, силикатные, кислородсодержащие минералы; в природной воде — в ещё меньших количествах, по сравнению с урановыми рудами. Содержание актиния в большинстве природных объектов соответствует изотопному равновесию материнских изотопов 235U. Повышенным содержанием данного элемента обладают такие минералы, как молибденит, халькопирит, касситерит, кварц, пиролюзит и др. Актиний характеризуется невысокой миграционной способностью и перемещением, то есть распространение актиния меньше по сравнению с ураном.

         Более распространённым является протактиний, атомный кларк которого 10−12 %. Протактиний был найден в урановой руде в 1913 году К. Фаянсом и О. Герингом. Общее содержание протактиния в земной коре (литосфере) в соответствии с содержанием урана (изотопы протактиния образуются при распаде 235U) составляет 4,4·107 т. Содержание в горных породах вулканического происхождения составляет 0,8·10−6 г/т, а в железных метеоритах 0,02·10−6 г/т.

          Период полураспада самого долгоживущего изотопа 237Np ничтожно мал по сравнению с возрастом Земли, поэтому в природных минералах нептуний практически не встречается. На Земле его нуклиды могут образоваться практически лишь с помощью ядерных реакций. Нептуний находится в минералах как промежуточный продукт распада других изотопов.   

Таблица: Содержание плутония в урановых и ториевых рудах

Руда

Местонахождение

Содержание урана, %

Отношение

239Pu/руда (по массе)

Отношение

239Pu/U (·1012)

Уранитит

Канада

13,5

9,1·10−12

7,1

Уранитит

Бельг. Конго

38

4,8·10−12

12

Уранитит

Колорадо

50

3,8·10−12

7,7

Концентрат уранитита

Бельг. Конго

45,3

7·10−12

15

Монацит

Бразилия

0,24

2,1·10−14

8,3

Монацит

Сев. Каролина

1,64

5,9·10−14

3,6

Фергюсонит

0,25

<1·10−14

<4

Карнотит

10

<4·10−14

<0,4


 

 

           Наличие плутония в небольших количествах в минеральных формах урана было впервые установлено в 1942 году. Верхний предел распространённости на Земле 244Pu — самого долгоживущего из изотопов плутония — составляет 3·10−22 г/г. Известно, что настуран и карнотит, найденные в Канаде и в штате Колорадо, содержат небольшое количество α-излучающего изотопа плутония 239Pu. Было определено содержание плутония в ряде урановых руд, с последующим выделением плутония из отходов производства 239Pu. Ни в одной из этих минеральных форм (см. таблицу) не было выделено другого изотопа плутония, кроме плутония-239. В образцах лунного грунта плутоний не был обнаружен.

                Однако выделение природного плутония даже из наиболее обогащённых этим элементом урановых руд непрактично и не сможет вытеснить искусственное получение данного элемента. На это указывает тот факт, что для выделения микрограммовых количеств плутония потребуется на каждый выделенный микрограмм плутония переработать 100 т рудного концентрата плутония.

 

 

Глава 5.Получение

          В большинстве случаев для получения чистого вещества элементов применяют разложение химического соединения этого элемента, обычно путём реакции его оксида, фторида и т. д. с водородом. Однако этот метод неприменим к актиноидам, поскольку они встречаются очень редко в природе, и поэтому для их выделения применяются более сложные методы очистки соединений, а затем и получения элементов данной группы.

            Чаще всего для выделения чистых соединений актиноидов используют фториды, поскольку они плохо растворяются в воде и могут быть легче удалены путём обменной реакции. Фториды актиноидов восстанавливают кальцием, магнием или барием, так как они сравнительно более активны по сравнению с третьей и последующими подгруппами. Например, металлический америций добывают действием на его трифторид парами бария:

 

 

             Аналогично добывают и остальные. Плутоний выделяют из его тетрафторида (PuF4), восстанавливая его:

 

 

                Металлический уран также добывают из тетрафторида (UF4), но в качестве восстановителя используют магний:

 

                   Среди актиноидов наиболее легко добываются торий и уран. Торий добывают преимущественно из монацита. При этом дифосфат тория (Th(PO4)2) с примесями редкоземельных элементов, которые осаждаются при повышенном pH сульфатного раствора, обрабатывают азотной кислотой, а нитрат тория экстрагируют трибутилфосфатом. Ещё лучше из кислых растворов торий отделяется от РЗЭ в присутствии роданид-ионов.

               При переработке монацита разложением 45%-ого раствора гидроксида натрия (при 140 °С) сначала добывают гидроксиды смешанных металлов, которые затем отфильтровывают (при 80 °C), промывают водой и растворяют в концентрированной хлорной кислоте. Далее кислый раствор нейтрализуют гидроксидами до pH=5,8. При этом оседает гидроксид тория (Th(OH)4) с примесями гидроксидов редкоземельных элементов (3 %), основная масса которых остается в растворе.

               Гидроксид тория растворяют в неорганической кислоте и снова очищают от редкоземельных элементов. Более эффективным считается метод растворения гидроксида тория в азотной кислоте, потому что добытый раствор можно очистить посредством экстракции органическими растворителями:

 

 

              Но в нитратной кислоте ториевый концентрат не полностью растворяется. В хлороводороде он растворяется лучше, образуя хлорид тория и воду.

 

           Таблица: Выделение урана и плутония из ядерного топлива.

             Можно отделить торий от редкоземельных элементов (когда их концентрация мала) осаждением оксалата тория из кислых растворов. Но самым перспективным считается метод экстрагирования солей тория органическими растворителями, которые не смешиваются с водой.

         Металлический торий отделяют из безводного оксида, хлорида или фторида с помощью кальция в инертной атмосфере:

 

 

           Иногда торий добывают электролизом нагретого фторида в смеси хлоридов натрия и калия. Электролиз проводят при 700—800 °С в графитовом тигле. Очень чистый торий добывают разложением его йодида с помощью метода Ван Аркеля и де Бура.

           Уран добывают из его руд разными способами. Сначала руду поджигают, затем воздействуют на неё кислотами, чтобы уран перешёл в растворённое состояние. При использовании серной кислоты, которая растворяет лишь соединения шестивалентного урана, нужно добавлять ещё и оксиды (MnO2, соли трёхвалентного железа и др.), чтобы перевести четырёхвалентный уран в шестивалентный. На следующей стадии уран отделяют из примесей. Для этого раствор отфильтровывают, а иногда непосредственно с пульпы экстрагируют соли урана органическими растворителями (диэтиловый эфир, трибутилфосфат). Из нитратного раствора лучше всего экстрагировать уран в керосиновом растворе ТБФ. При этом в органическую фазу переходит комплекс — UO2(NCS)2·2ТБФ.

              Когда раствор, который состоит из солей урана, отфильтрован от нерастворимого осадка, уран можно выделить осаждением гидроксидами (в виде (NH4)2U2O7) или пероксидом водорода (в виде UO4·2H2O).

Информация о работе Актиноиды