Защита населения и радиационная безопасность

Автор работы: Пользователь скрыл имя, 29 Января 2013 в 16:19, шпаргалка

Описание

Работа содержит ответы на вопросы для экзамена (или зачета) по дисциплине "Защита населения и радиационная безопасность"

Работа состоит из  1 файл

все шпорызащита населения.doc

— 459.50 Кб (Скачать документ)

Перед началом работ по извлечению пораженных из-под завалов необходимо осмотреть завал, выбрать к нему подход, устранить возможные обрушения  отдельных конструкций зданий, а  также потушить тлеющие и горящие  обломки разрушенных зданий.

Для извлечения людей из-под завалов, могут применяться такие способы, как разборки завала сверху, устройство проходов (галерей), проделывание проемов в стене.

Неотложные аварийно-восстановительные  работы проводятся с целью локализации  и устранения аварий и повреждений, которые затрудняют проведение спасательных работ и могут вызвать новые аварии и дополнительное поражение людей.

Для этого привлекаются, как правило, формирования водопроводно-канализационных сетей, аварийно-газотехнические, аварийно-технические по электросетям. В состав формирований входят звенья по водопроводным, канализационным, тепловым, электрическим, газовым, сантехническим сетям. Они привлекаются к аварийным работам в соответствии с их предназначением. При локализации и ликвидации аварий на коммунально-энергетических сетях объекта могут использоваться для выполнения вспомогательных работ и формирования общего назначения.

 

9. Что такое радиоактивность, радионуклиды и изотопы?

 

Явление радиоактивности  было открыто в 1896 году французским  ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся  в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.

Мерой радиоактивности  служит активность. Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).

Также встречается еще  такая единица активности, как  Кюри (Ки). Это - огромная величина: 1 Ки = 37000000000 Бк.

Активность радиоактивного источника характеризует его  мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.

Как было сказано выше, при этих распадах источник испускает  ионизирующее излучения. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза. Часто измеряется в Рентгенах (Р). Поскольку 1Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.

Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы.

Единица измерения мощности экспозиционной дозы - микроРентген/час.

Мощность дозы, умноженная на время, называется дозой. Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).

Для оценки воздействия  на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час. В быту можно считать, что 1 Зиверт = 100 Рентген. Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

Что такое изотопы?

В таблице Менделеева более 100 химических элементов. Почти  каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 - стабильные.

Например, у первого  элемента таблицы Менделеева - водорода – существуют следующие изотопы:

- водород Н-1 (стабильный),

- дейтерий Н-2 (стабильный),

- тритий Н-3 (радиоактивный,  период полураспада 12 лет).

Радиоактивные изотопы  обычно называют радионуклидами                   5

 

10. ОСНОВНЫЕ СВОЙСТВА РАДИОАКТИВНЫХ ИЗЛУЧЕНИЙ

Радиация  будет ионизирующей в том случае, если она способна разрывать химические связи молекул, составляющие живые организмы, и тем самым вызывать биологически важные изменения. Свет, радиоволны также, как и радиационное тепло от Солнца, представляют разновидность радиации. Однако они не вызывают повреждений путем ионизации, хотя, конечно, могут оказывать биологические эффекты, если увеличить интенсивность их воздействия.

Ионизирующее  излучение бывает следующего происхождения.

Альфа-частицы  — ядра атомов гелия, состоящие из двух протонов и двух нейтронов, имеют  положительный заряд, относительно тяжелы. Обычно альфа-частицы испускаются при радиоактивном распаде тяжёлых изотопов таких атомов, как уран или радий. Взаимодействуя с атомами, альфа-частицы выбивают из них электроны. Атом, который потерял хотя бы один электрон. уже перестает быть электронейтральным и приобретает избыток положительного заряда. В таких случаях говорят, что он становится положительным ионом, электрон, покинувший атом, может присоединиться к другому атому, создавая тем самым отрицательный ион. Таким образом, вдоль пути прохождения альфа-частицы образуются ионы, причем возникают они парами, в которых один ион положительный, а другой — отрицательный. Альфа-частицы очень сильно ионизируют вещество. В воде или биологической среде каждый третий атом на пути распространения этих частиц подвергается ионизации. Способность ионизировать атомы и молекулы является очень важной особенностью излучения.

Другой важной характеристикой излучения является длина его пробега.

Эта характеристика зависит, разумеется, от плотности среды, в которой распространяется излучение. Альфа-частицы имеют относительно малую длину пробега. В воздухе, например, она составляет всего несколько сантиметров, а обычный лист бумаги становится для нее непреодолимой преградой. В результате ионизации альфа-частица тратит много энергии и. если даже не сталкивается с каким-либо ядром, скорость ее постепенно снижается. В конце концов она захватывает два свободных электрона, превращаясь в результате в нейтральный атом гелия.

Существует  свыше 300 изотопов, испускающих альфа-излучения. Подавляющее их большинство — изотопы тяжелых элементов. Список открывается иридием и платиной, включает, в частности, полоний, радий, уран, плутоний и завершается элементом под номером 110.

Бета-излучение  представляет собой поток электронов или позитронов, испускаемых ядрами радиоактивных элементов при бета-распаде. Из-за малой массы электрона длина пробега бета-излучения уже не так мала, как у альфа-излучения. Прежде чем исчезнуть, бета-частицы успевают пробежать в воздухе несколько метров, в воде и мягких тканях человеческого тела — несколько миллиметров, а в металле — десятки микрон. Разумеется, электроны при распространении в среде также оказывают на нее ионизирующее воздействие. Степень ионизации, однако, гораздо ниже, чем в случае альфа-излучения. В воде или биологической среде ионизируется один атом из тысячи. Малая масса и слабая ионизирующая способность бета-частиц ведут и к меньшим потерям энергии при их распространении в среде. Благодаря этому бета-частицы обладают гораздо большей проникающей способностью, чем альфа-частицы, их испускает большинство изотопов (свыше 1000).

Ионизирующее  излучение – поток заряженных или нейтральных частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов или молекул среды. Они возникают в результате естественных или искусственных радиоактивных распадов веществ, ядерных реакций деления в реакторах, ядерных взрывов и некоторых физических процессов в космосе.

Ионизирующие излучения  состоят из прямо или косвенно ионизирующих частиц или смеси тех и других. К прямо ионизирующим частицам относятся частицы (электроны, α-частицы, протоны и др.), которые обладают достаточной кинетической энергией, чтобы осуществить ионизацию атомов путём непосредственного столкновения. К косвенно ионизирующим частицам относятся незаряженные частицы (нейтроны, кванты и т.д.), которые вызывают ионизацию через вторичные объекты.

α-распад  характерен  для  тяжелых элементов (урана, тория, полония, плутония и др.). α-частицы -  это положительно заряженные ядра гелия. Они обладают большой ионизирующей и малой проникающей способностью и двигаются со скоростью 20000 км/с.

 β-излучение - это  поток отрицательно заряженных  частиц  (электронов), которые выпускаются  при β -распаде  радиоактивных  изотопов.

γ-излучение, испускаемое  атомными  ядрами  при  радиоактивных  превращениях, обладает энергией от нескольких тысяч до нескольких  миллионов  электрон-вольт. Распространяется оно, как и рентгеновское  излучение, в воздухе со скоростью света. Ионизирующая способность γ -излучения значительно меньше, чем у α-  и  β -частиц. γ -излучение - это электромагнитные  излучения  высокой  энергии.  Оно  обладает большой проникающей способностью, изменяющейся в широких пределах.

Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные. К фотонному (квантовому) ионизирующему излучению относятся гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц. К корпускулярному ионизирующему излучению относят α-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

Нейтронное  и гамма излучение принято  называть проникающеё радиацией или проникающим излучением.

Ионизирующие  излучения по своему энергетическому  составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение – это  излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение – это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.

 

11. ОСНОВНЫЕ ДОЗИМЕТРИЧЕСКИЕ ВЕЛИЧИНЫ И ЕДИНИЦЫ АКТИВНОСТИ В СИ И ВНЕСИСТЕМНЫЕ

Физические величины, функционально связанные с радиационным эффектом, называются дозиметрическими.

Основной физической величиной, определяющей степень радиационного  воздействия, является поглощенная доза ионизирующего излучения D - отношение средней энергии  , переданной ионизирующим излучением веществу в элементарном объеме, к  массе  dm вещества в этом объеме:                                  

                                              

Единица поглощенной  дозы в СИ - грей (Гр). Грей равен поглощенной дозе ионизирующего излучения, при которой веществу массой 1 кг передается энергия ионизирующего излучения, равная 1 Дж, т.е. 1Гр = 1Дж/кг.

Внесистемной единицей поглощенной дозы ионизирующего  излучения является рад (рад).  Рад равен поглощенной дозе ионизирующего излучения, при которой веществу массой 1кг передается энергия ионизирующего излучения, равная 100 эрг. Таким образом, 1рад = 0,01Гр.

Для оценки радиационной безопасности при хроническом облучении  человека в малых дозах, т.е. дозах, не способных вызвать лучевую  болезнь, используется эквивалентная доза ионизирующего излучения Hт - произведение «тканевой дозы» (дозы на орган) Dт  на взвешивающий коэффициент wдля излучения R:                                         

Hт= wR× Dт .                                      

При этом доза на орган - средняя поглощенная доза в определенной ткани или органе человеческого тела задается в виде:                                   

                                 

где   mт - масса ткани или органа,       

D - поглощенная доза  в элементе dm.

Если в пределах органа или ткани D=const, то Dт= D.

Если поле излучения состоит  из нескольких излучений с различными значениями wR, то эквивалентная доза определятся в виде:                                    

                                   

Единица эквивалентной дозы в СИ - зиверт (Зв).

Зиверт равен эквивалентной дозе, при которой произведение поглощенной дозы в биологической ткани стандартного состава на взвешивающий коэффициент wравно 1Дж/кг. Следовательно,                                    

1Зв=1Гр/ w.                                       

Информация о работе Защита населения и радиационная безопасность