Современные теории эволюции вселенной

Автор работы: Пользователь скрыл имя, 06 Апреля 2012 в 21:55, реферат

Описание

Вселенная - это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется Метагалактикой, или нашей Вселенной. Размеры метагалактики очень велики: радиус космологического горизонта составляет 15-20 млрд. световых лет.

Содержание

1. Введение
2. Строение Галактики
3. Эволюция Вселенной
4. Теории эволюции Вселенной
5. Расширяющаяся Вселенная
6. Теория Эдвина Хаббла

Работа состоит из  1 файл

referat1.doc

— 346.50 Кб (Скачать документ)


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     Выполнили: ученицы 11 класса Б

                                                                           МОУ «СОШ №5»

                                                                           Гланская Татьяна

                                                                           Кутейникова Елена

 

 

 

 

 

 

 

 

 

 

 

 

                                Содержание

1.      Введение

2.      Строение Галактики

3.      Эволюция Вселенной

4.      Теории эволюции Вселенной

5.      Расширяющаяся Вселенная

6.      Теория Эдвина Хаббла

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

 

Вселенная - это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется Метагалактикой, или нашей Вселенной. Размеры метагалактики очень велики: радиус космологического горизонта составляет 15-20 млрд. световых лет.

Современная астрономия не только открыла грандиозный мир галактик, но и обнаружила уникальные явления: расширение Метагалактики, космическую распространенность химических элементов, реликтовое излучение, свидетельствующие о том, что Вселенная непрерывно развивается.

С эволюцией структуры Вселенной связано возникновение скоплений галактик, обособление и формирование звезд и галактик, образование планет и их спутников. Сама Вселенная возникла примерно 20 млрд. лет назад из некоего плотного и горячего протовещества. Существует точка зрения, что с самого начала протовещество с гигантской скоростью начало расширятся. На начальной стадии это плотное вещество разлеталось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновении частиц. Остывая и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В этих комплексах, в свою очередь возникали более плотные участки - там впоследствии и образовались звезды и даже целые галактики.

 

 

Строение Галактики. Виды Галактик.

 

Окружающие Солнце звезды и само Солнце составляют малую часть гигантского скопления звезд и туманностей, которую называют Галактикой. Галактика имеет довольно сложную структуру. Существенная часть звезд в Галактике находится в гигантском диске диаметром примерно 100 тыс. и толщиной около 1500 световых лет. В этом диске насчитывается более сотни миллиардов звезд самых различных видов. Наше Солнце - одна из таких звезд, находящихся на периферии Галактики вблизи ее экваториальной плоскости.

Звезды и туманности в пределах Галактики движутся довольно сложным образом: они участвуют во вращении Галактики вокруг оси, перпендикулярной ее экваториальной плоскости. Различные участки Галактики имеют различные периоды вращения.

Звезды удалены друг от друга на огромные расстояния и практически изолированы друг от друга. Они практически не сталкиваются, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами Галактики.

Астрономы последние несколько десятилетий изучают другие звездные системы, схожие с нашей. Это очень важные исследования в астрономии. За это время внегалактическая астрономия добилась поразительных успехов.

Число звезд в Галактике порядка триллиона. Самые многочисленные из них - карлики с массами, примерно в 10 раз меньшими массы Солнца. В состав Галактики входят двойные и кратные звезды, а также группы звезд, связанных силами тяготения и движущиеся в пространстве как единое целое, - звездные скопления. Существуют рассеянные звездные скопления, например Плеяды в созвездии Тельца. Такие скопления не имеют правильной формы; в настоящее время их известно более тысячи.

Наблюдаются шаровые звездные скопления. Если в рассеянных скоплениях содержатся сотни или тысячи звезд, то в шаровых их сотни тысяч. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет.

В различных созвездиях обнаруживаются туманные пятна, которые состоят в основном из газа и пыли, - это туманности. Они бывают неправильной, клочковатой формы - диффузные, и правильной формы, напоминающие по виду планеты, - планетарные.

Существуют еще светлые диффузные туманности, например Крабовидная туманность, названная за необычную сетку из ажурных газовых волокон. Это источник не только оптического излучения, но и радиоизлучения, рентгеновских и гамма-квантов. В центре Крабовидной туманности находится источник импульсного электромагнитного излучения - пульсар, у которого впервые были обнаружены наряду с пульсациями радиоизлучения оптические пульсации блеска и пульсации рентгеновского излучения. Пульсар, обладающий мощным переменным магнитным полем, ускоряет электроны и вызывает свечение туманности в различных участках спектра электромагнитных волн.

Пространство в Галактике заполнено везде - разреженным межзвездным газом и межзвездной пылью. В межзвездном пространстве существуют и различные поля - гравитационное и магнитное. Пронизывают межзвездное пространство космические лучи, представляющие собой потоки электрически заряженных частиц, которые при движении в магнитных полях разогнались до скоростей, близких к скорости света, и приобрели огромную энергию.

Галактику можно представить в виде диска с ядром в центре и огромными спиральными ветвями, содержащими в основном наиболее горячие и яркие звезды и массивные газовые облака. Диск со спиральными ветвями образует основу плоской подсистемы Галактики. А объекты, концентрирующиеся к ядру Галактики и лишь частично проникающие в диск, относятся к сферической подсистеме. Сама Галактика вращается вокруг своей центральной области. В центре Галактики сосредоточена лишь небольшая часть звезд. Солнце находится на таком расстоянии от центра Галактики, где линейная скорость звезд максимальна. Солнце и ближайшие к нему звезды движутся вокруг центра Галактики со скоростью 250 км/с, совершая полный оборот примерно за 290 млн. лет.

 

 

 

 

 

Эволюция вселенной

 

Вопрос об эволюции вселенной всегда был открытым для человечества. Звёздное небо над головой долгое время было для человека символом вечности и неизменности. Лишь в Новое время люди осознали, что "неподвижные" звёзды на самом деле движутся, причём с огромными скоростями. В XX в. человечество свыклось с ещё более странным фактом: расстояния между звёздными системами - галактиками, не связанными друг с другом силами тяготения, постоянно увеличиваются. И дело здесь не в природе галактик сама Вселенная непрерывно расширяется! Естествознанию пришлось расстаться с одним из своих основополагающих принципов: все вещи меняются в этом мире, но мир в целом всегда одинаков. Это можно считать важнейшим научным событием XX в.

 

 

Всё началось, когда Альберт Эйнштейн создал общую теорию относительности. В её уравнениях описаны фундаментальные свойства материи, пространства и времени. ("Относительный" по-латыни звучит как rela-tivus, поэтому теории, основанные на теории относительности Эйнштейна, называются релятивистскими.)

 

Применив свою теорию ко Вселенной как целой системе, Эйнштейн обнаружил, что такого решения, которому соответствовала бы не меняющаяся со временем Вселенная, не получается. Этот результат не удовлетворил великого учёного. Чтобы добиться стационарного решения своих уравнений, Эйнштейн ввёл в них дополнительное слагаемое - так называемый ламбда-член. Однако до сих пор никто не смог найти какого-либо физического обоснования этого дополнительного члена.

 

В начале 20-х гг. советский математик Александр Александрович Фридман решил для Вселенной уравнения общей теории относительности, не накладывая условия стационарности. Он доказал, что могут существовать два решения для Вселенной: расширяющийся мир и сжимающийся мир. Полученные Фридманом уравнения используют для описания эволюции Вселенной и в настоящее время.

 

Все эти теоретические рассуждения никак не связывались учёными с реальным миром, пока в 1929 г. американский астроном Эдвин Хаббл не подтвердил расширение видимой части Вселенной. Он использовал при этом эффект Доплера. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения её спектральных линий.

 

Ещё во втором десятилетии XX в. американский астроном. Всего Слай-фер, исследовав спектры нескольких галактик, заметил, что у большинства из них спектральные линии смещены в красную сторону. Это означало, что они удаляются от нашей Галактики со скоростями в сотни километров в секунду.

 

Хаббл определил расстояния до небольшого числа галактик и их скорости. Из его наблюдений следовало, что чем дальше находится галактика, тем с большей скоростью она от нас удаляется. Закон, по которому скорость удаления пропорциональна расстоянию, получил название закона Хаббла.

 

Означает ли это, что наша Галактика является центром, от которого и идёт расширение? С точки зрения астрономов, такое невозможно. Наблюдатель в любой точке Вселенной должен увидеть ту же картину: все галактики имели бы красные смещения, пропорциональные расстоянию до них. Само пространство как бы раздувается. Если на воздушном шарике нарисовать галактики и начать надувать его, то расстояния между ними будут возрастать, причём тем быстрее, чем дальше они расположены друг от друга. Разница лишь в том, что нарисованные на шарике галактики и сами увеличиваются в размерах, реальные же звёздные системы повсюду во Вселенной сохраняют свой объём. Это объясняется тем, что составляющие их звёзды связаны между собой силами гравитации.

 

Факт постоянного расширения Вселенной установлен твердо. Самые далёкие из известных галактик и ква-заров имеют такое большое красное смещение, что длины волн всех линий в их спектрах оказываются больше, чем у близких источников, в пять-шесть раз!

 

Но если Вселенная расширяется, то сегодня мы видим её не такой, какой она была в прошлом. Миллиарды лет назад галактики располагались значительно ближе друг к другу. Ещё раньше отдельных галактик просто не могло существовать, а ещё ближе к началу расширения не могло быть даже звёзд. Эта эпоха - начало расширения Вселенной - удалена от нас на 12-15 млрд лет. Оценки возраста галактик пока слишком приближённы, чтобы уточнить эти цифры. Но надёжно установлено, что самые старые звёзды различных галактик имеют примерно одинаковый возраст. Следовательно, большинство звёздных систем возникло в тот период, когда плотность вещества во Вселенной была значительно выше современной.

 

На начальной стадии всё вещество Вселенной имело настолько высокую плотность, что её даже невозможно себе представить. Идею о расширении Вселенной из сверхплотного состояния ввёл в 1927 г. бельгийский астроном Жорж Леметр, а предположение, что первоначальное вещество было очень горячим, впервые высказал Георгий Антонович Гамов в 1946 г. Впоследствии эту гипотезу подтвердило открытие так называемого реликтового излучения. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим Взрывом.

 

 

Теории эволюции Вселенной.

 

Существовало и существует множество теорий эволюции Вселенной.

1.Теория Вечной Вселенной.  Как известно, в звездах идет ядерное сгорание водорода с превращением его в гелий. Не рассматривая здесь других ядерных реакций, которые могут протекать в недрах звезд, скажем, что синтез гелия из водорода является главнейшим источником энергии во Вселенной из числа известных. Возникает вопрос о том, есть ли предел горючему - водороду, насколько долго хватит его? По одной из версий, опирающихся на философские измышления о постоянстве и вечности Вселенной, где-то во Вселенной существуют источники образования водорода, по сути, из ничего. Философские принципы нередко перекликаются с научными. Но одна из главных опор современной научной мысли - законы сохранения - не позволяют большинству ученых принять эту модель вечной Вселенной. Идея о возможности появления чего-то из ничего противоречит научным принципам. Вы в жизни  встретите мало приверженцев изложенной гипотезы.

2.Теория пульсирующей Вселенной. По одной из гипотез, расширение Вселенной, которое наблюдается в нынешнее время, впоследствии сменится сжатием. Как считается, это произойдет из-за того, что разлетающиеся галактики замедляют свой бег, тормозясь взаимным гравитационным притяжением. В один из моментов галактики остановятся и начнут вновь сближаться. Кончится все должно тем же, с чего и начиналось: образованием сверхкомпактного объекта и новым Большим взрывом. Таким образом, согласно этой теории, Вселенная пульсирует.

3.Теория горячей Вселенной. По этим представлениям с небольшими модификациями Вселенная сначала представляла из себя одну сингулярную точку, которая по неизвестной причине «взорвалась», получив колоссальный импульс энергии, в результате чего появилась очень горячая Вселенная (Гамов, 1948), заполненная фундаментальными элементарными частицами, разлетающимися в разные стороны рис. 49).

 

Гипотеза Г. А. Гамова о «горячей вселенной» построена на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной — Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения (реликтовое излучение [42}). Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется (сильно охлаждённым) и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна была лежать в пределах от 1 до 10 К. В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К (сегодня определено как 2,725 К [60])

4.Теории инфляции Вселенной. Центральной идеей этих моделей является предположение о чрезвычайно быстром раздувании (инфляции) Вселенной в первые мгновения после Большого Взрыва.                                                    Модель инфляции Вселенной в первые мгновения после Большого Взрыва позволила решить некоторые проблемы модели горячей Вселенной:благодаря крайне высоким темпам расширения на инфляционной стадии разрешается проблема крупномасштабной однородности и изотропности Вселенной: весь наблюдаемый объём Вселенной оказывается результатом расширения единственной причинно связанной области доинфляционной эпохи, на инфляционной стадии радиус пространственной кривизны увеличивается настолько, что современное значение плотности автоматически оказывается весьма близким к критическому, то есть разрешается проблема плоской Вселенной, в ходе инфляционного расширения должны возникать флуктуации плотности с такой амплитудой и формой спектра (т. н. плоский спектр возмущений), что в результате возможно последующее развитие флуктуаций в наблюдаемую структуру Вселенной при сохранении крупномасштабной однородности и изотропности, то есть разрешается проблема крупномасштабной структуры Вселенной.

Информация о работе Современные теории эволюции вселенной