Солнечная система

Автор работы: Пользователь скрыл имя, 18 Января 2011 в 22:41, реферат

Описание

Парадокс современной астрономии состоит в удивительно низком уровне знаний о Солнечной системе. Астрономия в рамках известных физических законов способна построить близкие к реальности модели рождения, жизни и смерти небесных объектов, размеры, массы, энергетическая отдача и удаленность которых громадны по сравнению с реалиями повседневного опыта.

Содержание

Введение 3
1. Строение Солнечной системы 4
2. Солнце 6
3. Краткая характеристика планет Солнечной системы 12
3.1 Меркурий 12
3.2 Венера 12
3.3 Земля 13
3.4 Марс 14
3.5 Юпитер 16
3.6 Сатурн 17
3.7 Уран 19
3.8 Нептун 19
Заключение 21
Список использованной литературы 22

Работа состоит из  1 файл

КСЕ Солнечная система.doc

— 114.00 Кб (Скачать документ)

     Излучение в разных областях короны происходит неравномерно. Существуют горячие активные и спокойные области, а также корональные дыры с относительно невысокой температурой в 600 000 градусов, из которых в пространство выходят магнитные силовые линии. Такая («открытая») магнитная конфигурация позволяет частицам беспрепятственно покидать Солнце, поэтому солнечный ветер испускается в основном из корональных дыр. Солнечная корона и в общем сильно неоднородна и содержит множество особенностей, таких как стримеры, петли и протуберанцы. Структура и размер этих особенностей, как и форма самой короны, меняются с течением солнечного цикла (в периоды максимума солнечной активности корона имеет округлую форму, а в минимуме — вытянута вдоль солнечного экватора).

     Солнечная активность это совокупность нестационарных явлений на Солнце. К этим явлениям относятся солнечные пятна, солнечные вспышки, факелы, флоккулы, протуберанцы, корональные лучи, конденсации, транзиенты, спорадическое радиоизлучение, увеличение ультрафиолетового, рентгеновского и корпускулярного излучения и др. Большинство этих явлений тесно связаны между собой и возникают в активных областях. В их протекании отчётливо видна цикличность со средним периодом 11.2 года, а также с периодами 22, 80-90 лет и др.

     В процессе развития активной области  в атмосфере Солнца иногда возникают ситуации, при которых возможна быстрая перестройка магнитных полей. Эта перестройка вызывает вспышки, сопровождаемые сложными движениями ионизованного газа, его свечением, ускорением частиц и т.д. Вспышки на Солнце представляют собой самые мощные из всех проявлений Солнечной активности. Такие вспышки, как правило, наблюдаются вблизи пятен. Обычно бывает несколько слабых вспышек за день.

     Поток выброшенных при вспышке частиц примерно через сутки достигает  орбиты Земли и вызывает на Земле магнитную бури и полярные сияния. Имеются свидетельства сильного влияния вспышечной активности на погоду и состояние биосферы Земли.

       Как показали исследования Теодора  Ландшайдта, уровень Солнечной активности  зависит от взаиморасположения  планет и от ряда других астрологических факторов. Более того, Ландшайдт разработал методику, позволяющую сугубо астрологическими методами прогнозировать изменения в Солнечной активности. Долговременные предсказания вспышек Солнечной активности и геомагнитных бурь, которые делает Ландшайдт, сбываются (по данным проверки астрономов) на 90% (!).

     Таким образом, если Солнечная активность зависит от астрологических факторов, то и все явления на Земле, связанные  с изменением Солнечной активности, также зависят от астрологических показателей.  

 

3. Краткая характеристика планет Солнечной системы 

3.1. Меркурий

     С Земли наблюдать Меркурий в телескоп сложно: он не удаляется от Солнца на угол более 28°. Его изучали при  помощи радиолокации с Земли, а межпланетный зонд «Маринер-10» сфотографировал половину его поверхности. Вокруг оси он вращается с периодом 58,6 сут., в точности равным 2/3 орбитального периода, поэтому каждая точка его поверхности поворачивается к Солнцу лишь один раз за 2 меркурианских года, т.е. солнечные сутки там длятся 2 года!

     По средней плотности Меркурий находится на втором месте после Земли. Вероятно, у него большое металлическое ядро, составляющее 75% радиуса планеты (у Земли оно занимает 50% радиуса). Поверхность Меркурия подобна лунной: темная, абсолютно сухая и покрытая кратерами. Средний коэффициент отражения света поверхности Меркурия около 10%, примерно как у Луны. Температура поверхности планеты днем около 700 C, а ночью около 100 C. По данным радиолокации, на дне полярных кратеров в условиях вечной темноты и холода, возможно, лежит лед.

     У Меркурия практически нет атмосферы  – лишь крайне разреженная гелиевая оболочка с плотностью земной атмосферы  на высоте 200 км. Вероятно, гелий образуется при распаде радиоактивных элементов  в недрах планеты. У Меркурия есть слабое магнитное поле и нет спутников. 

3.2. Венера

     Это вторая от Солнца и ближайшая к  Земле планета – самая яркая  «звезда» на нашем небе; порой она  видна даже днем. Венера во многом похожа на Землю: ее размер и плотность лишь на 5% меньше, чем у Земли; вероятно, и недра Венеры похожи на земные. Поверхность Венеры всегда закрыта толстым слоем желтовато-белых облаков, но с помощью радаров она исследована довольно подробно. Вокруг оси Венера вращается в обратном направлении (по часовой стрелке, если смотреть с северного полюса) с периодом 243 земных суток. Ее орбитальный период 225 суток; поэтому венерианские сутки (от восхода до следующего восхода Солнца) длятся 116 земных суток.

     Атмосфера Венеры состоит в основном из углекислого  газа, а также небольшого количества азота и паров воды. В виде малых примесей обнаружены соляная кислота и плавиковая кислота. Температура на Венере около 750C по всей поверхности и днем, и ночью.

     Облака  Венеры состоят из микроскопических капелек концентрированной серной кислоты. Верхний слой облаков удален от поверхности на 90 км, температура там около 200C; нижний слой – на 30 км, температура около 430C. Еще ниже так жарко, что облаков нет. Разумеется, на поверхности Венеры нет жидкой воды. Атмосфера Венеры на уровне верхнего облачного слоя вращается в том же направлении, что и поверхность планеты, но значительно быстрее, совершая оборот за 4 сут; это явление называют суперротацией, и объяснения ему пока не найдено.

     В отличие от Земли на Венере нет  четко выраженных континентальных  плит, но отмечается несколько глобальных возвышенностей, например земля Иштар  размером с Австралию. На поверхности  Венеры множество метеоритных кратеров и вулканических куполов. Очевидно, кора Венеры тонка, так что расплавленная лава подходит близко к поверхности и легко изливается на нее после падения метеоритов. Поскольку дождей и сильных ветров у поверхности Венеры не бывает, эрозия поверхности происходит очень медленно, и геологические структуры остаются доступными для наблюдения из космоса сотни миллионов лет. О внутреннем строении Венеры известно мало. Вероятно, у нее есть металлическое ядро, занимающее 50% радиуса. Но магнитного поля у планеты нет вследствие ее очень медленного вращения. Нет у Венеры и спутников. 

3.3. Земля

     Наша  планета – единственная, у которой  большая часть поверхности (75%) покрыта  жидкой водой. Земля – активная планета  и, возможно, единственная, у которой обновление поверхности обязано процессам тектоники плит, проявляющим себя срединно-океаническими хребтами, островными дугами и складчатыми горными поясами. Распределение высот твердой поверхности Земли бимодальное: средний уровень океанического дна на 3900 м ниже уровня моря, а континенты в среднем возвышаются над ним на 860 м.

     Сейсмические  данные указывают на следующее строение земных недр: кора (30 км), мантия (до глубины 2900 км), металлическое ядро. Часть  ядра расплавлена; там генерируется земное магнитное поле, которое улавливает заряженные частицы солнечного ветра (протоны и электроны) и формирует вокруг Земли две заполненные ими тороидальные области – радиационные пояса (пояса Ван-Аллена), локализованные на высотах 4000 и 17 000 км от поверхности Земли .

     Атмосфера Земли состоит на 78% из азота и  на 21% из кислорода; это результат  длительной эволюции под влиянием геологических, химических и биологических процессов. Возможно, первичная атмосфера Земли  была богата водородом, который затем  улетучился. Дегазация недр наполнила атмосферу углекислым газом и водяным паром. Но пар сконденсировался в океанах, а двуокись углерода оказалась связанной в карбонатных породах. Таким образом, в атмосфере остался азот, а кислород появился постепенно в результате жизнедеятельности биосферы. Еще 600 млн. лет назад содержание кислорода в воздухе было раз в 100 ниже нынешнего.

     Существуют  указания, что климат Земли изменяется в короткой (10 000 лет) и длинной (100 млн. лет) шкалах. Причиной этого могут  быть изменения орбитального движения Земли, наклона оси вращения, частоты вулканических извержений. Не исключены и колебания интенсивности солнечного излучения. В нашу эпоху на климат влияет и деятельность человека: выбросы газов и пыли в атмосферу. У Земли есть спутник – Луна, происхождение которой до сих пор не разгадано. 

3.4. Марс

     Марс  похож на Землю, но почти вдвое  меньше ее и имеют несколько меньшую  среднюю плотность. Период суточного  вращения (24 ч 37 мин) и наклон оси (24°) почти не отличаются от земных.

     Земному наблюдателю Марс кажется красноватой звездочкой, блеск которой заметно меняется; он максимален в периоды противостояний, повторяющиеся через два с небольшим года (например, в апреле 1999 и в июне 2001). Особенно близок и ярок Марс в периоды великих противостояний, происходящих, если он в момент противостояния проходит вблизи перигелия; это случается через каждые 15–17 лет.

     В телескоп на Марсе видны яркие  оранжевые области и более  темные районы, тон которых меняется в зависимости от сезона. На полюсах  лежат ярко-белые снежные шапки.

     Красноватый цвет планеты связан с большим  количеством окислов железа (ржавчины) в ее грунте.

     Разреженная атмосфера Марса состоит на 95% из углекислого газа и на 3% из азота. В малом количестве присутствуют водяной пар, кислород и аргон. При таком низком давлении не может быть жидкой воды. Средняя дневная температура 240 C, а максимальная летом на экваторе достигает 290 C. Суточные колебания температуры около 100 C. Таким образом, климат Марса – это климат холодной, обезвоженной высокогорной пустыни.

     В высоких широтах Марса зимой  температура опускается ниже 150 C и атмосферный углекислый газ замерзает и выпадает на поверхность белым снегом, образуя полярную шапку. Периодическая конденсация и сублимация полярных шапок вызывает сезонные колебания давления атмосферы на 30%. К концу зимы граница полярной шапки опускается до 45°–50° широты, а летом от нее остается небольшая область (300 км диаметром у южного полюса и 1000 км у северного), вероятно, состоящая из водяного льда, толщина которого может достигать 1–2 км.

     Иногда  на Марсе дуют сильные ветры, поднимающие  в воздух тучи мелкого песка. Особенно мощные пылевые бури бывают в конце  весны в южном полушарии, когда  Марс проходит через перигелий орбиты и солнечное тепло особенно велико. На недели и даже месяцы атмосфера становится непрозрачной от желтой пыли. Отложения пыли так сильно меняют вид марсианской поверхности от сезона к сезону, что это заметно даже с Земли при наблюдении в телескоп. В прошлом эти сезонные изменения цвета поверхности некоторые астрономы считали признаком растительности на Марсе.

     Геология  Марса весьма разнообразна. Большие  пространства южного полушария покрыты  старыми кратерами, оставшимися  от эпохи древней метеоритной  бомбардировки (4 млрд. лет назад). Значительная часть северного полушария покрыта более молодыми лавовыми потоками. Особенно интересна возвышенность Фарсида, на которой расположены несколько гигантских вулканических гор. Высочайшая среди них – гора Олимп – имеет поперечник у основания 600 км и высоту 25 км. Хотя признаков вулканической активности сейчас нет, возраст лавовых потоков не превышает 100 млн. лет, что немного по сравнению с возрастом планеты 4,6 млрд. лет.

     Одним из интереснейших геологических  открытий, сделанных по снимкам с  космических аппаратов, стали разветвленные извилистые долины длиной в сотни километров, напоминающие высохшие русла земных рек. Это наводит на мысль о более благоприятном климате в прошлом, когда температура и давление могли быть выше и по поверхности Марса текли реки. Правда, расположение долин в южных, сильно кратерированных районах Марса указывает на то, что реки на Марсе были очень давно, вероятно, в первые 0,5 млрд. лет его эволюции. Теперь вода лежит на поверхности в виде льда полярных шапок и, возможно, под поверхностью в виде слоя вечной мерзлоты.

     Внутреннее  строение Марса изучено слабо. Его  низкая средняя плотность свидетельствует  об отсутствии значительного металлического ядра; во всяком случае оно не расплавлено, что следует из отсутствия у Марса  магнитного поля.  

3.5. Юпитер

     Крупнейшая  планета Солнечной системы, Юпитер, в 11 раз больше Земли и в 318 раз  массивнее ее. Его низкая средняя  плотность указывает на состав, близкий  к солнечному: в основном это водород  и гелий. Быстрое вращение Юпитера  вокруг оси вызывает его полярное сжатие на 6,4%.

     В телескоп на Юпитере видны облачные полосы, параллельные экватору; светлые  зоны в них перемежаются красноватыми поясами. Вероятно, светлые зоны –  это области восходящих потоков, где видны верхушки аммиачных  облаков; красноватые пояса связаны с нисходящими потоками, яркий цвет которых определяют гидросульфат аммония, а также соединения красного фосфора, серы и органические полимеры. Температура на уровне верхушек аммиачных облаков 125C, но с глубиной она увеличивается на 2,5 C/км. На глубине 60 км должен быть слой водяных облаков.

     У Юпитера нет твердой поверхности. Верхний слой планеты протяженностью 25% радиуса состоит из жидкого  водорода и гелия. Ниже, где давление превышает 3 млн. бар, а температура 10 000 C, водород переходит в металлическое состояние. Возможно, вблизи центра планеты есть жидкое ядро из более тяжелых элементов с общей массой порядка 10 масс Земли. В центре давление около 100 млн. бар и температура 20–30 тыс. C.

Информация о работе Солнечная система