Понятие диссипативной структуры

Автор работы: Пользователь скрыл имя, 22 Марта 2012 в 18:38, доклад

Описание

Единый процесс развития охватывает явления живой и неживой природы и общества, поэтому естественно описать весь процесс развития на одном языке, в рамках единой схемы, с использованием общей терминологии. В эволюционной теории для описания процессов развития используют триаду: изменчивость, наследственность, отбор. Эти же факторы рассматривает Н.Н.Моисеев в своей монографии «Алгоритмы развития». Изменчивостью он называет любые проявления стохастичности и неопределенности. Наследственностью – способность материи сохранять свои особенности, способность изменяться от прошлого к будущему, способность будущего зависеть от прошлого.

Работа состоит из  1 файл

Понятие диссипативной структуры.doc

— 66.00 Кб (Скачать документ)


Понятие диссипативной структуры

Единый процесс развития охватывает явления живой и неживой природы и общества, поэтому естественно описать весь процесс развития на одном языке, в рамках единой схемы, с использованием общей терминологии. В эволюционной теории для описания процессов развития используют триаду: изменчивость, наследственность, отбор. Эти же факторы рассматривает Н.Н.Моисеев в своей монографии «Алгоритмы развития». Изменчивостью он называет любые проявления стохастичности и неопределенности. Наследственностью – способность материи сохранять свои особенности, способность изменяться от прошлого к будущему, способность будущего зависеть от прошлого.

Принципами отбора он называет те принципы, которые вызывают к существованию более или менее устойчивые образования, ими являются законы сохранения, законы физики и химии в частности, второй закон термодинамики, вариационные принципы и т. д.

Задача состоит в том, чтобы выявить то общее содержание, которое присуще любым процессам развития. Моисеев строит классификацию принципов отбора и рассматривает с единой точки зрения его механизмы.

Он выделяет два разных класса отбора. Это адаптационные механизмы (определение множества состояний системы, которые будут обеспечивать ее устойчивость при данных условиях внешней среды) и бифуркационные механизмы (качественный скачок, изменение организации системы).

Определяющую роль эволюционного периода развития систем играют такие понятия, как адаптация, устойчивость, стабилизирующий отбор.

Необходимым условием существования живых организмов является постоянство внутренней среды. Гомеостазис (от греческого «гомео» – тот же, «стазис» – состояние) рассматривается биологами как способность биологических систем противостоять изменениям внешней среды и сохранять состояние равновесия. Например, только благодаря механизмам поддержания гомеостазиса некоторые растения могут жить на ядовитых отвалах рудников. Есть растения – концентраторы металлов – алюминия, молибдена, никеля, свинца, стронция. При этом для предотвращения отравления тканей в растениях синтезируются специфические белки (определяющие устойчивость к высоким концентрациям металлов), изменяются количество и качество корневых выделений, тяжелые металлы связываются в клетках дубильными веществами и органическими кислотами. Механизмы поддержания гомеостазиса исторически закреплены и направлены на повышение устойчивости организма в онтогенезе, что обеспечивает успех в воспроизведении потомства.

Развитие – это борьба двух противоположных тенденций – сохранение гомеостазиса и поиск новых организационных форм, уменьшающих локальную энтропию.

Этапность развития органического мира, на которой в значительной мере базируется периодизация геологической истории, – твердо установленный факт. Однако общая теория этапности разработана еще очень слабо, особенно это касается наиболее принципиального ее раздела «О закономерностях перехода от одного этапа к другому». До сих пор обычно недооцениваются изменения биоценотических связей в экосистемах прошлого, вызывавшиеся появлением новых групп организмов. Вместе с тем чрезвычайно большое внимание уделяется возможной роли глобальных катастроф.

Согласно концепции прерывистого равновесия, разработанной американскими исследователями С.Гоулдом, Н.Элдриджем и С.Стэнли, эволюция, во всяком случае на видовом уровне, по крайней мере в 95 % случаев идет не непрерывно, а своего рода скачками. Предполагается, что виды остаются практически неизменными на протяжении буквально миллионов лет, а затем за несколько десятков или сотен лет происходит формирование новых видов. Переход от вида к виду совершается в ее свете не посредством скачка в одном поколении, а путем накопления мутации и отбора. Всякое значительное изменение экологических условий влечет за собой перестройку всей организации сообщества животных. Например, у животных, ведущих одинокий образ жизни, в случае необходимости возникает строгая иерархическая структура. В период нехватки корма такая организация сообщества определяет очередность доступа к пище. Доминирование может не только разделять, но и объединять животных, оно способствует процессу локализации, образованию структуры в сообществе взамен агрессивных взаимодействий особей.

Биологические системы обладают способностью сохранять и передавать информацию в виде структур и функций, возникших в прошлом в результате длительной эволюции. Открыты подвижные генетические элементы, которые оказались замешаны в таких общебиологических явлениях, как азотфиксация, злокачественный рост клеток, работа иммунной системы и приспособление бактерий к антибиотикам, нестабильные мутации, материнская наследственность.

Нестойкое, нестабильное состояние гена, когда он начинает мутировать в десятки, сотни раз чаще обычного, связано не с изменениями внутри самого гена, а с введением в район его расположения определенного «контролирующего» элемента, способного блуждать по хромосомам. Эти элементы влияют на «включение» и «выключение» генов, т. е. на темп наследственной изменчивости. Одно из самых удивительных открытий для генетиков в последние 15–20 лет состояло в осознании повсеместности подвижных элементов, общности их строения и причастности к самым разным генетическим явлениям. Подвижные гены имеют на одном и другом конце повторы. Такие генетические тексты, обрамленные повторами, начинают вести свою отдельную от общей наследственной системы жизнь. Именно такого рода структуры получают возможность увеличивать число своих копий в хромосомах. Они подчиняют своему звучанию близлежащие гены, которые либо замолкают, либо усиливают активность, либо начинают работать в другом режиме. Включив в свой состав участок ДНК, отвечающий за самоудвоение, подвижный элемент превращается в плазмиду, которая самостоятельно размножается вне дочерней хромосомы у бактерий и вне ядра в клетках высших организмов.

В классической генетике: мутация возникает случайно; им подвержены единичные особи; их частота очень мала. В «подвижной генетике» изменения не случайны, зависят от типа подвижного элемента; им подвержены много особей; их частота велика, может достигать десятка процентов.

Именно с мобильностью активных элементов связывают обнаруженные в природных популяциях дрозофил регулярные вспышки мутации определенных генов. Темп мутационного процесса непостоянный, так, время от времени популяции или виды вступают в «мутационный» период. Самое поразительное открытие в генетике за последнее время – это возможность с помощью мобильных элементов переносить гены или группы генов от одних видов к другим (иногда к самым далеким), т. е. благодаря перемещающимся элементам генофонды всех организмов объединены в общий генофонд всего живого мира. Это особенно ярко продемонстрировали плазмиды с детерминантами устойчивости к антибиотикам в колоссальном эксперименте, невольно поставленном человеком на бактериях. С помощью генсектицидов человек расширяет эксперимент на насекомых, и в ответ их популяции, вероятно, охватываются определенными, быстро распространяющимися генетическими элементами, повышающими устойчивость организма («генетическая экспансия»). Предполагается, что когда-то в клетках насекомых поселились бактерии – симбионты, которые постепенно передали большинство своих генов в ядро и превратились в митохондрии и пластиды. Это замечательный пример переноса генов от про – к эукариотам. Способность клеток одного вида воспринимать ДНК от других, иногда эволюционно далеких видов, возможность горизонтального переноса генов считается «одним из главных чудес XX века». Классическая генетика гласит: каждый ген располагается на своей хромосоме и занимает на ней строго фиксированное положение. Сейчас известно много вариантов перемещающихся элементов, которые могут менять свое место на хромосоме и даже перемещаться с хромосомы на хромосому. Таким образом могут рождаться новые признаки организма.

Однако способность системы обмениваться информацией с внешней средой, увеличивать или уменьшать число элементов-признаков, сохранять устойчивость еще не делает эту систему развивающейся.

Порождаемая неравновесными внешними условиями неустойчивость приводит к увеличению интенсивности диссипации, вследствие чего создаются условия возникновения новой неустойчивости. Иными словами, в системе увеличивается интенсивность протекания некоторых необратимых процессов, благодаря чему и отклонение системы от равновесия становится еще большим. Это означает, что вероятность существования такого класса флуктуаций, по отношению к которым новые процессы становятся неустойчивыми, возрастает.

С другой стороны, если бы в результате возникновения неустойчивости интенсивность диссипации снижалась, то система по своим свойствам приблизилась бы к некоторой равновесной замкнутой системе, т. е. к состоянию, в котором затухают любые флуктуации. Такой механизм можно изобразить следующим образом (И.Р.Пригожин, И.Стенгерс):

Интенсивность диссипации, т. е. увеличение энтропии, можно связать с интенсивностью роста числа новых элементов-признаков в системе. Если флуктуации вызывают интенсивный рост новых элементов и между ними не успевают образовываться связи, организация системы нарушается, энтропия возрастает, система становится структурно неустойчивой.

Существование неустойчивости можно рассматривать как результат флуктуации, которая сначала была локализована в малой части системы, а затем распространилась и привела к новому макроскопическому состоянию.

Исследования школы Пригожина показали, что понятия структурной устойчивости и порядка через флуктуации применимы к системам различной природы, в том числе экономическим, социальным: «Пределов для структурной устойчивости не существует. Неустойчивости могут возникать в любой системе, стоит лишь ввести подходящие возмущения. Мутации и „новорожденные“ элементы возникают стохастически и собираются в единую систему господствующими в данный момент детерминистическими принципами. Это позволяет нам надеяться на непрестанную генерацию „новых типов“ и „новых идей“, которые могут быть включены в структуру системы, обеспечивая тем самым ее непрерывное развитие».

Удаленность от равновесия, нелинейность может служить причиной возникновение упорядоченности в системе. Биологическая упорядоченность, генерация когерентного света лазером, возникновения пространственной и временной упорядоченности в химических реакциях и гидродинамике, автоволны в различных средах, наконец, функционирование экосистем в животном мире или жизнь человеческого общества – все эти примеры являются поразительной иллюстрацией явлений самоорганизации, образования диссипативных структур. Эти структуры наряду с замечательными регуляторными свойствами проявляют необычайную гибкость и разнообразие.

Как показали работы школы Пригожина, важнейшей общей чертой широкого класса процессов самоорганизации является потеря устойчивости и последующий переход к устойчивым диссипативным структурам. В точке изменения устойчивости в результате ветвления должны возникнуть по меньшей мере два решения, соответствующие устойчивому, близкому к равновесному состоянию и диссипативной структуре. Для диссипативных структур характерна устойчивость, которая одновременно является структурной и функциональной.

Эволюцию можно рассматривать как проблему структурной устойчивости. Система не всегда является структурно устойчивой, причем эволюция диссипативной структуры определяется последовательностью событий в соответствии со схемой (Г.Николис, И.Р.Пригожин).

Шмальгаузен в качестве одного из факторов эволюции выделял борьбу за существование. Согласно теории конкуренции, близкие виды могут населять район лишь в том случае, если они эффективно делят между собой необходимые ресурсы.

Хатгинсон провозгласил принципиально новую программу изучения неравновесных сообществ, чьи принципы организации коренным образом отличаются от тех, к которым привыкли экологи, рассматривающие сообщество как жестко организованную совокупность видов.

В альтернативном подходе прямая конкуренция за пищу подменяется сложными и динамичными информационными связями. В зависимости от условий метаболиты (продукты жизнедеятельности) данного вида либо угнетают, либо, наоборот, стимулируют размножение других видов. При этом возможны как негативные, так и позитивные межвидовые отношения. Разные виды не только не стремятся окончательно вытеснить друг друга, но как бы «удерживают» в сообществе те виды, численность которых падает ниже определенного уровня.

В теории конкуренции выражена концепция детерминизма; конкуренция определяет численность, облик и эволюцию существующих видов, потребляющих одну и ту же пищу. Другая парадигма: близкие виды, расположенные в экосистеме на одном трофическом уровне, всегда живут среди избытка пищи, поскольку их численность эффективно ограничивается сложным комплексом причин, в том числе и конкуренцией.

Согласно этой парадигме биологическое сообщество можно рассматривать как диссипативную структуру, которая, находясь в неравновесном состоянии, постоянно ведет обмен с внешней средой. В исходной неупорядоченной системе за счет последовательно реализующихся неравновесных неустойчивостей, за счет когерентного поведения элементов может возникнуть функциональная организованность.

Приведем пример из нового быстро развивающегося научного направления – адаптологии. Клод Бернар назвал приспособление адаптационно-итоговой проблемой всей физиологии. Адаптация человека и животных представляет собой процесс, в течение которого организм приобретает отсутствовавшую ранее устойчивость к определенным факторам среды и в результате решает задачи, ранее несовместимые с жизнью.

При всем разнообразии приспособительных процессов в них есть сходство. На первом этапе адаптации к любому новому фактору организм подходит к максимуму своих возможностей, к критической (бифуркационной) точке. Если человек или животное не погибает, а фактор по-прежнему действует, то возможности живой системы возрастают, и на смену аварийной стадии в большинстве случаев приходит стадия эффективной и устойчивой привычки (возникает диссипативная структура).

Информация о работе Понятие диссипативной структуры