Общая характеристика методов научного познания природы

Автор работы: Пользователь скрыл имя, 29 Декабря 2011 в 04:59, реферат

Описание

Понятие «метод» (от греч. «методос» - путь к чему-либо) означает совокупность приемов и операций практического и теоретического освоения действительности. Метод вооружает человека системой принципов, требо¬ваний, правил, руководствуясь которыми он может достичь намеченной цели. Владение методом означает для человека знание того, каким образом, в какой последовательности совершать те или иные действия для решения тех или иных задач, и умение применять это знание на практике.

Содержание

1.Понятия метода и методологии. Классификация методов научного познания 3
2. Общенаучные методы эмпирического познания. Наблюдение и эксперимент 5
3. Измерение как метод эмпирического познания 8
4. Общенаучные методы теоретического познания. Абстрагирование и идеализация. Мысленный эксперимент 10
5. Формализация как метод теоретического познания. Язык науки 13
6. Индукция и дедукция как формальнологические методы познания. Основные методы индукции 15
7. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания. Анализ и синтез 18
Список литературы 22

Работа состоит из  1 файл

Методы научного познания.doc

— 110.50 Кб (Скачать документ)

      Международная система единиц физических величин  является наиболее совершенной и  универсальной из всех существовавших до настоящего времени. Она охватывает «физические величины механики, термодинамики, электродинамики и оптики, которые связаны между собой физическими законами. Потребность в единой международной системе единиц измерения в условиях современной научно-технической революции очень велика. Поэтому такие международные организации, как ЮНЕСКО и Международная организация законодательной метрологии, призвали государства, являющиеся членами этих организаций, принять вышеупомянутую Международную систему единиц и градуировать в этих единицах все измерительные приборы.

      С прогрессом науки продвигается вперед и измерительная техника. Наряду с совершенствованием существующих измерительных приборов, работающих на основе традиционных, утвердившихся принципов (замена материалов, из которых сделаны детали прибора, внесение в его конструкцию отдельных изменений и т. д.), происходит переход на принципиально новые конструкции измерительных устройств, обусловленные новыми теоретическими предпосылками. В последнем случае создаются приборы, в которых находят реализацию новые научные достижения.

      Хорошо  развитое измерительное приборостроение, разнообразие методов и высокие характеристики средств измерения способствуют прогрессу в научных исследованиях. В свою очередь, решение научных проблем часто открывает новые пути совершенствования самих измерений.

4. Общенаучные методы теоретического познания. Абстрагирование и идеализация. Мысленный эксперимент

      Процесс познания всегда начинается с рассмотрения конкретных, чувственно воспринимаемых предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к каким-то обобщенным представлениям, понятиям, к тем или иным теоретическим положениям, т. е. научным абстракциям. Получение этих абстракций связано со сложной абстрагирующей деятельностью мышления.

      В процессе абстрагирования происходит отход (восхождение) от чувственно воспринимаемых конкретных объектов (со всеми их свойствами, сторонами и т. д.) к воспроизводимым в мышлении абстрактным представлениям о них. Абстрагирование, таким образом, заключается в мысленном отвлечении от каких-то — менее существенных — свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков этого объекта. Результат, получаемый в процессе абстрагирования, именуют абстракцией (или используют термин абстрактное — в отличие от конкретного).

      Переход от чувственно-конкретного к абстрактному всегда связан с известным упрощением действительности. Вместе с тем, восходя от чувственно-конкретного к абстрактному, теоретическому, исследователь получает возможность глубже понять изучаемый объект, раскрыть его сущность.

      Мысленная деятельность исследователя в процессе научного познания включает в себя особый вид абстрагирования, который называют идеализацией. Идеализация представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований. В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Так, широко распространенная в механике идеализация, именуемая материальной точкой, подразумевает тело, лишенное всяких размеров.

      Целесообразность  использования идеализации определяется следующими обстоятельствами.

      Во-первых, идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности, математического, анализа. По отношению же к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную, для описания свойств и поведения этих реальных объектов.

      Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение.

      В-третьих, применение идеализации целесообразно  тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. Вышеупомянутая абстракция материальной точки позволяет в некоторых случаях представлять самые различные объекты — от молекул или атомов до гигантских космических объектов. При этом правильный выбор допустимости подобной идеализации играет очень большую роль. Если в ряде случаев возможно и целесообразно рассматривать атомы в виде материальных точек, то такая идеализация становится недопустимой при изучении структуры атома. Точно так же можно считать материальной точкой нашу планету при рассмотрении ее вращения вокруг Солнца, но отнюдь не в случае рассмотрения ее собственного суточного вращения.

      Будучи  разновидностью абстрагирования, идеализация  допускает элемент чувственной  наглядности (обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью). Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, каковым является мысленный эксперимент (его также называют умственным, субъективным, воображаемым, идеализированным).

      Мысленный эксперимент предполагает оперирование идеализированным объектом (замещающим в абстракции объект реальный), которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного (идеализированного) эксперимента с реальным.

      Но  в отличие от реального эксперимента в мысленном эксперименте исследователь оперирует не материальными объектами, а их идеализированными образами и само оперирование производится в его сознании, т. е. чисто умозрительно.

      В реальном эксперименте приходится считаться  с реальными физическими и иными ограничениями его проведения, с невозможностью в ряде случаев устранить мешающие ходу эксперимента воздействия извне> с искажением в силу указанных причин получаемых результатов. В этом плане мысленный эксперимент имеет явное преимущество перед экспериментом реальным. В мысленном эксперименте можно абстрагироваться от действия нежелательных факторов, проведя его в идеализированном, «чистом» виде.

5. Формализация как метод теоретического познания. Язык науки

      Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символом (знаков).

      Для построения любой формальной системы необходимо:

      а) задание алфавита, т. е. определенного  набора знаков;

      б) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»;

      в)  задание правил, по которым от одних  слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

      В результате создается формальная знаковая система в виде определенного  искусственного языка. Важным достоинством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем (оперирование знаками) без непосредственного обращения к этому объекту.

      Другое  достоинство формализации состоит  в обеспечении краткости и  четкости записи научной информации, что открывает большие возможности для оперирования ею. Математические описания различных объектов, процессов являются ярким примером формализации. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания.

      Но  расширяющееся использование формализации как метода теоретического познания связано не только с развитием математики. В химии, например, соответствующая химическая символика вместе с правилами оперирования ею явилась одним из вариантов формализованного искусственного языка. Все более важное место метод формализации занимал в логике по мере ее развития. Труды Лейбница положили начало созданию метода логических исчислений. Последний привел к формированию в середине XIX в. математической логики, которая во второй половине нашего столетия сыграла важную роль в развитии кибернетики, в появлении электронных вычислительных машин, в решении задач автоматизации производства и т. д.

      Возможность представить те или иные теоретические положения науки в виде формализованной знаковой системы имеет большое значение для познания. Но при этом следует иметь в виду, что формализация той или иной теории возможна только при учете ее содержательной стороны. Только в этом случае могут быть правильно применены те или иные формализмы. Голое математическое уравнение еще не представляет физической теории, чтобы получить физическую теорию необходимо придать математическим символам конкретное эмпирическое содержание.

      Язык  современной науки существенно  отличается от естественного человеческого  языка. Он содержит много специальных  терминов, выражений, в нем широко используются средства формализации, среди которых центральное место принадлежит математической формализации. Исходя из потребностей науки, создаются различные искусственные языки, предназначенные для решения тех или иных задач.

      Формализованные искусственные языки не обладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойственная естественным языкам. Они характеризуются точно построенным синтаксисом (устанавливающим правила связи между знаками безотносительно их содержания) и однозначной семантикой (семантические правила формализованного языка вполне однозначно определяют соотнесенность знаковой системы с определенной предметной областью). Таким образом, формализованный язык обладает свойством моносемичности. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научного познания.

      Создание  какого-то единого формализованного языка науки не представляется возможным. Даже достаточно богатые формализованные языки не удовлетворяют требованию полноты, т. е. некоторое множество правильно сформулированных предложений такого языка (в том числе и истинных) не может быть выведено чисто формальным путем внутри этого языка. Данное положение вытекает из результатов, полученных в начале 30-х годов XX столетия австрийским логиком и математиком Куртом Гёделем.

      Формализованные языки не могут быть единственной формой языка современной науки, ибо стремление к максимальной адекватности требует использовать и неформализованные системы. Но в той мере, в какой адекватность немыслима без точности, тенденция к возрастающей формализации языков всех и особенно естественных наук является объективной и прогрессивной.

6. Индукция и дедукция как формальнологические методы познания. Основные методы индукции

      Индукция (от лат. inductio — наведение, побуждение) есть метод познания, основывающийся на формальнологическом умозаключении, которое приводит к получению общего вывода на основании частных посылок. Другими словами, это есть движение нашего мышления от частного, единичного к общему. Индукция широко применяется в научном познании. Обнаруживая сходные признаки, свойства у многих объектов определенного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам данного класса. Например, в процессе экспериментального изучения электрических явлений использовались проводники тока, выполненные из различных металлов. На основании многочисленных единичных опытов сформировался общий вывод об электропроводности всех металлов.

      Индукция, используемая в научном познании (научная индукция), может реализовываться в виде следующих методов:

      1. Метод единственного сходства (во  всех случаях наблюдения какого-то явления обнаруживается лишь один общий фактор, все другие — различны; следовательно, этот единственный сходный фактор есть причина данного явления).

      2.  Метод единственного различия (если  обстоятельства возникновения какого-то  явления и обстоятельства, при  которых оно не возникает, почти  во всем сходны и различаются лишь одним фактором, присутствующим только в первом случае, то можно сделать вывод, что этот фактор и есть причина данного явления).

      3. Соединенный метод сходства и  различия (представляет собой комбинацию двух вышеуказанных методов).

Информация о работе Общая характеристика методов научного познания природы