Лазерные технологии и их применение

Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 20:43, реферат

Описание

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания «Light Amplification by Stimulated Emission of Radiation», означающего усиление света в результате вынужденного излучения.

Содержание

Введение____________________________________________________2
1. Характеристики некоторых типов лазеров________________________3
2. Классификация лазеров по безопасности_________________________5
3. Краткий исторический обзор___________________________________6
4. Лазерная технология__________________________________________7
5. Основные свойства лазерного луча______________________________8
6. Применение лазеров _________________________________________9
а) Лазерный луч в роли сверла______________________________10
б) Лазерная резка и сварка _________________________________11
в) Голография ___________________________________________13
г) Применение лазеров в медицине__________________________14
д) Лазерное оружие_______________________________________16
е) Новейшие области применения лазеров____________________17
Заключение ________________________________________________20

Работа состоит из  1 файл

Лазерные технологии и их применение.doc

— 269.00 Кб (Скачать документ)

В печати сообщалось, что для повышения интереса Пентагона к лазерам американские инженеры выполнили следующий эксперимент. Создали лазерную пушку для борьбы с низколетящими объектами. Затем запус­тили модель беспилотного самолета, который на малой высоте прошел над позицией, где размещалась эта пуш­ка. На глазах наблюдавших была отрезана часть плоскости беспилотного самолета. Самого луча никто не ви­дел, но самолет был сбит. В опубликованных материалах, носящих рекламный характер, ничего не говорится о мощности излучения пушки, о высоте, на которой про­летел самолет, о материале, из которого были сделаны плоскости самолета, а также о покраске крыла самолета. После этого эксперимента, как сообщается, работы по созданию лазерного оружия развернулись с новой силой.

Помимо использования так называемого прямого воз­действия лазерного излучения на объекты поражения, высокая направленность лазерного излучения применя­ется за рубежом и для создания лазерных имитаторов стрельбы и тренажеров. Использование лазеров для тре­нировки стрелков и наводчиков танковых пушек обос­новывают тем, что лазер, имея малую расходимость пучка, повышает реальность имитации попадания в цель, обеспечивает «безопасность» стрельбы, дает возможность проводить тренировки в любое время суток и года. Так как имитаторы стрельбы и тренажеры соответ­ствуют по дальности стрельбы тем видам оружия, кото­рые они имитируют, т. е. в пределах от сотни метров до нескольких километров, то предполагают применить маломощные твердотельные лазеры, газовые и полупро­водниковые лазеры, простые по конструкции, надежные в эксплуатации, безопасные для «противника».

 

е) Новейшие области применения лазеров.

Лазеры в геодезии. Оптические методы измерения расстояний и углов хорошо известны в промышленной метрологии и геодезической службе, однако их применение было ограничено источниками света. Измерения на открытом воздухе с использованием модулированного света были возможны лишь при небольших расстояниях в несколько километров. С помощью лазеров удалось значительно расширить область применения оптических методов, а в ряде случаев и упростить их.

Лазерная гироскопия. С появлением лазеров роторные гироскопы были заменены лазерными. Это сразу сулило ряд технических достоинств. Во-первых, резко сократились размеры контура из-за того, что в кольцевом лазере оба луча многократно обегают окружность и имеет место накопление фазового сдвига. Во-вторых, лучи не ослабляются в среде, как это было в эксперименте А. Майкельсона, а усиливаются за счет получения энергии от активного вещества.

Лазерные гироскопы находят применение в зарубежных устройствах измерительной техники, в системах наземной ориентации, в системах ориентации воздушных и космических аппаратов, а также при создании бесплатформенных инерциальных систем (БИС) навигации.

Лазерный гироскоп не свободен и от недостатков. К ним относятся необходимость оснащения прибора рядом вспомогательных систем, трудности калибровки и т. п. Их наличие позволяет сделать вывод. Что лазерный гироскоп не сможет полностью заменить роторный. Скорее всего, он будет применяться в комплексе измерителей первичной информации и лишь в отдельных случаях использоваться самостоятельно.

Лазерная связь. Известно, что предельная скорость передачи определяется длительностью одного периода колебаний используемых волн. Чем короче период, тем больше скорость передачи сообщений. Это справедливо и для передачи сообщений с помощью азбуки Морзе, с помощью телефонной связи, радио связи, с помощью телевидения. Таким образом, канал связи (передатчик, приемник и связывающая их линия) может передавать со скоростью не больше, чем частота собственных колебаний всего канала. Но это еще не достаточное условие. Для характеристики канала связи требуется такой параметр, как ширина полосы канала, т.е. диапазон частот, который используется в этом канале связи. Чем больше скорость передачи, тем шире полоса частот, на которых следует передавать. Оба этих параметра вынуждают осваивать все более высокие частоты электромагнитных колебаний. Ведь с увеличением частоты увеличивается не только скорость передачи по одному каналу, но и число каналов связи.

Техника связи стала забираться во все более коротковолновую область, используя сначала дециметровые, потом метровые и, наконец, сантиметровые волны. А дальше произошла остановка из-за того, что не было подходящего источника несущих электромагнитных колебаний. Ранее существовавшие источники давали широкий спектр с очень малой мощностью, приходящейся на отдельные частоты колебаний. Световые волны небыли когерентными, а это исключало использование их для передачи сложных сигналов, требующих модуляции излучения. Положение резко изменилось с появлением лазеров.

Когерентность и монохроматичность лазерного излучения позволяет модулировать и детектировать луч таким образом, что используется вся ширина оптического диапазона. Оптический участок спектра гораздо шире и вместительнее, чем радиоволновой.

Лазеры в Агропроме. Особенности лазерного излучения привлекли внимание не только физиков, химиков, металлургов, оптиков. Оказалось, что и одна из древнейших сфер деятельности человека - сельскохозяйственная, нуждается во внедрении лазерных технологий. Пищевая промышленность, а также промышленность микробиологических препаратов стали использовать лазерное излучение. Уже сейчас применяется лазерная стимуляция посевного материала, лазерное дистанционное зондирование полей, космическое землеведение, лазерное прогнозирование состояния атмосферы, лазерное исследование качества зерна, лазерный контроль качества яиц и обработка мясных продуктов лазерным излучением. Ну и, конечно, лазерное излучение используется в машиностроении пищевой промышленности, например для обработки режущих инструментов, закалки подшипников и шестерен, контроля поверхности и т.п.

Лазерные локаторы. Лазеры позволили осуществить светолокатор, с помощью которого расстояние до предметов измеряется с точностью до нескольких миллиметров. Такая точность недоступна для радиолокаторов.

В настоящее время в мире существует несколько десятков лазерных локационных систем. Многие из них уже имеют космическое значение. Они осуществляют локацию Луны и геодезических искусственных спутников Земли.

Проведение таких исследований организуется для того, чтобы точнее узнать расстояние до Луны в течение некоторого периода времени, например, в течение года. Исследуя графики, описывающие изменение этого расстояния со временем, ученые получают ответы на ряд вопросов, имеющих научную важность. Импульсные лазерные локаторы сегодня применяются не только в космонавтике, но и в авиации. В частности, они могут играть роль научных измерителей высоты.

Впрочем, у оптических лазерных систем есть и свои слабые стороны. Например, не так просто при помощи остронаправленного луча лазера обнаружить объект, так как время обзора контролируемой области пространства оказывается слишком большим. Поэтому оптические локационные системы используются вместе с радиолокационными. Последние обеспечивают быстрый обзор пространства, обнаруживают цель, а затем оптическая система измеряет параметры цели и осуществляет слежение за ней.

Большой интерес представляют последние разработки в области создания телевизора на основе лазерных технологий. Такие телевизоры отличаются сверхвысоким качеством изображения, более высокой четкостью, небольшими размерами.

Стоит также отметить использование лазеров в уже давно известных принтерах высокого качества или лазерных принтерах. В этих устройствах лазерное излучение используется для создания на специальном светочувствительном барабане скрытой копии печатаемого изображения.

  Одной из характерных особенностей развития современной лазерной технологии является разделение сфер влияния твердотельных и газовых лазеров. Твердотельные лазеры в ближайшие годы будут иметь преимущества при выполнении энергетических импульсных процессов обработки, к которым относятся точечная сварка, сверление алмазных и рубинных камней, нанесение рисунков на тонких пленках за один импульс на большой площади и т.д. В тех случаях, когда для выполнения какой-либо технологической операции достаточно энергии излучения газовых лазеров, следует отдавать им предпочтение ввиду более высоких частот повторения импульсов, стабильности и большого срока службы. Газовые лазеры и установки на их основе предоставляют технологу-исследователю большие возможности в выборе частот и режимов работы, что имеет особое значение при обработке и нанесении различных пленочных покрытий. При этом найдут применение теплохимические и фотохимические методы воздействия лазерного излучения на материалы, которые широко используются в различных областях микроэлектроники.

Импульсные лазеры уже на современном уровне превзошли по импульсной мощности все другие источники энергии, и можно ожидать дальнейшего улучшения характеристик их излучения. Однако средняя мощность лазеров пока недостаточна.

Можно предположить, что аргоновые лазеры и лазеры на основе иттриево-алюминиевого граната найдут широкое применение в технологических процессах средней энергоемкости, а мощные СО2-лазеры займут особое положение. Установки на их основе вытеснят традиционное оборудование для резки, сварки, сверления отверстий, термообработки материалов и изделий в области тяжелого машиностроения. Здесь СО2- лазеры будут вне конкуренции. Простота управления интенсивностью управления лазерного излучения в сочетании с использованием современных средств программного управления позволит использовать лазерные установки в автоматизированных системах.

Появление стабилизированных одночастотных лазеров, в особенности лазеров с плавной перестраиваемой частотой, каковыми являются жидкостные лазеры, значительно расширит области практических применений оптических методов в системах неразрушающего контроля, метрологии, системах измерения и контроля размеров и линейных перемещений. Лазерный пучок станет более удобным инструментом для определения физико-химических свойств материалов, использования в качестве визира, измерения длины, скорости и т.д. При этом приборы на основе лазеров будут обладать исключительно высокой точностью и воспроизводимостью при локальных измерениях.

Практически выявлена перспективность применения маломощных лазеров непрерывного действия для измерения скоростей в потоках жидкости и газа.

Однако применение лазеров большой мощности, работающих в сине-зеленой или инфракрасной областях спектра, позволит повысить дальность действия оптических доплеровских измерителей скорости до нескольких километров. Эти измерители могут найти применение в различных технологических процессах как датчики скорости для автоматизированных систем.

Широкое применение найдут лазеры в научных исследованиях. Важной областью явится использование перестраиваемых по частоте лазеров для спектральных исследований с высокой чувствительностью и разрешающей способностью.

Наличие мощных непрерывных и импульсных лазеров позволит более совершенно провести исследования в области взаимодействия излучения с непрозрачными средами, изучить нелинейные эффекты, возникающие при прохождении интенсивного лазерного излучения через оптически прозрачные среды.

Доступность и экономическая эффективность надежного лазерного оборудования будут и в дальнейшем определять широкое практическое применение лазерной технике в промышленности. В ближайшие годы, очевидно, появятся еще более производительные, мощные и надежные установки, которые позволят ускорить применение лазеров в различных областях науки и техники, в том числе и в приборо- и машиностроении.

 

                                                Заключение.

Лазеры решительно и притом широким фронтом вторгаются в нашу действительность. Они необычайно расширили наши возможности в самых различных областях - обработке металлов, медицине, измерении, контроле, физических, химических и биологических исследованиях. Уже сегодня лазерный луч овладел множеством полезных и интересных профессий. Во многих случаях использование лазерного луча позволяет получить уникальные результаты. Можно не сомневаться, что в будущем луч лазера подарит нам новые возможности, представляющиеся сегодня фантастическими.

Мы уже начали привыкать, что “лазер все может”. Подчас это мешает трезво оценить реальные возможности лазерной техники на современном этапе ее развития. Неудивительно, что чрезмерные восторги по поводу возможностей лазера иногда сменяются некоторым охлаждением к нему. Все это, однако, не может замаскировать основной факт - с изобретением лазера человечество получило в свое распоряжение качественно новый, в высокой степени универсальный, очень эффективный инструмент для повседневной, производственной и научной деятельности. С годами этот инструмент будет все более совершенствоваться, а вместе с этим будет непрерывно расширяться и область применения лазеров.

     За последнее время в России и за рубежом были проведены обширные исследования в области квантовой электроники, созданы разнообразные лазеры, а так же приборы, основанные на их использовании. Нам, молодому поколению, нужно знать об этом интересном приборе, переделывающем мир, как можно больше, и быть готовым к его использованию в учебной, научной и военной деятельности.

Нарастающие темпы исследований в области лазерной техники открывают возможности создания новых типов лазеров со значительно улучшенными характеристиками, позволяющими расширить области их применения в машино- и приборостроении. В настоящее время мы являемся свидетелями непрерывно увеличивающейся мощности излучения как твердотельных, так и газовых лазеров, работающих в постоянном режиме, что расширяет возможности их применения при различных технологических операциях: сварке деталей значительно больших габаритов, резке более толстых листов с большими скоростями, сверлении с увеличенными скоростями отверстий значительных диаметров и т.д. Открываются новые возможности в области упрочнения деталей машин и приборов, а также режущих инструментов. Дальнейшие успехи в этом направлении пока ограничиваются выходом из строя отдельных оптических элементов лазера: зеркал, выходных окон и др. – из-за их недостаточно высокой лучевой прочности. В области повышения лучевой прочности производятся обширные исследования. Одновременно открываются новые возможности применения лазеров в технологических операциях.

Информация о работе Лазерные технологии и их применение