Контрольная работа по "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 21 Декабря 2011 в 14:17, контрольная работа

Описание

Биосфера и экология. Современная концепция экологии.

Вероятностный подход: квантовая механика.

Работа состоит из  1 файл

Контрольная КСЕ.doc

— 82.50 Кб (Скачать документ)

План: 

  1. Биосфера  и экология. Современная  концепция экологии.
 
  1. Вероятностный подход: квантовая  механика.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Биосфера  и экология.
 
 

      С точки зрения уровня организации  биосфера представляет собой наиболее обширное объединение живых существ. Биосферу можно определить как систему биогеоценозов, или живых сообществ. Ввиду сложности такого объединения представления о биосфере менялись и уточнялись с развитием науки, но главным в них оставалась идея целостной картины живой природы, а также вопросы взаимодействия живых систем и среды их обитания. Последние вопросы составляют содержание экологических исследований.Слово “экология” в буквальном смысле означает науку о “доме” (от греч. “ойкос” – жилище, местообитание). Как входящая в биологический цикл, экология – наука о местообитании живых существ, их взаимоотношении с окружающей среды. Экология изучает организацию и функционирование надорганизменных систем различных уровней: популяций, сообществ, экосистем. Термин “экология” предложил немецкий зоолог Э. Геккель в 1866 г., но подлинного расцвета эта наука достигла в ХХ веке, и развитие далеко не закончено.

      Если  учение о биосфере сразу подняло  биологию с уровня отдельных видов  к целостности высшего порядка, то экология изучает различные уровни целостности, промежуточные между организменным и глобальным. Выделяют аутоэкологию, которая исследует взаимодействие отдельных видов со средой, и синэкологию, которая изучает сообщества. Сообществом, или биоценозом, называют совокупность растений и животных, населяющих участок среды обитания. Совокупность сообщества и среды носит название экологической системы, или биогеоценоза. К экологическим системам обычно относят все живые системы вместе с их экологической нишей, т.е. окружающей средой, начиная от отдельной популяции и кончая биосферой. Все они являются открытыми системами, которые обмениваются с окружающей природной средой веществом, энергией или информацией. Наименьшей единицей экологии является популяция.

  На  популяционном уровне различают такие сообщества, как биоценозы и биогеоценозы, в которых сообщества живых организмов исследуются не только во взаимодействии между собой, но и в тесной связи с неорганическими условиями своего существования: почвой, микроклиматом, гидрологией местности и т.п.Еще более крупным системным объединением в экологии считается биом, который включает в свой состав живые системы и неживые факторы на обширной территории, например лиственные породы деревьев на Среднерусской возвышенности.

  Наконец, биосфера охватывает, согласно Вернадскому, все живое, биокосное и косное вещество на поверхности нашей планеты. И хотя она в известных пределах функционирует автономно, но в конечном счете может существовать и развиваться только благодаря энергии Солнца и потому является также открытой системой, которую в отличие от других систем называют экосферой.

  В экологии наибольшее значение для изучения структуры ее систем приобретает анализ тех трофических, или пищевых, связей, которые соединяют различные популяции друг с другом. Различают автотрофные(верхний уровнь, который называют также зеленым поясом, мы встречаемся с растениями, содержащими хлорофилл и перерабатывающими солнечную энергию и простые неорганические вещества в сложные органические соединения) и гетеротрофные (нижний уровнь, происходит преобразование и разложение этих органических соединений в простые, неорганические) организмы соответственно тому, питаются ли они самостоятельно за счет преобразования неорганической энергии или же поедают другие живые организмы.

      Таким образом, в механизме трофических  связей можно выделить следующие элементы:

  • продуценты автотрофных организмов, главным образом зеленых 
растений, которые могут производить пищу из простых, неорганиче 
ских веществ;

  • фаготрофы, гетеротрофные животные, к которым принадлежат животные, питающиеся другими живыми организмами, растительными и животными;

  • сапротрофы, организмы, которые получают энергию путем раз 
ложения мертвых тканей или растворенного органического вещества.

  В связи с этим гетеротрофные организмы разделяют на биофагов, поедающих живые организмы, и сапрофагов, питающихся мертвыми тканями.

  Одна  из характерных черт всех экосистем  состоит в том, что в них  происходит постоянное взаимодействие автотрофных и гетеротрофных подсистем организмов. Такое взаимодействие приводит к круговороту вещества в природе, несмотря на то что иногда организмы разделены в пространстве.  Причем значительный временной разрыв между производством органического вещества автотрофами и его использованием приводит к его накоплению. Именно благодаря такому временному разрыву на нашей планете образовались огромные запасы ископаемого топлива, которые до сих пор служат важнейшим источником энергии для человечества. 

      Первым  из биологов, который ясно указал на огромную роль живых организмов в образовании земной коры, был Ж. Б. Ламарк. Он подчеркивал, что все вещества, находящиеся на поверхности земного шара и образующие его кору, сформировались благодаря деятельности живых организмов.

      Результаты  такого подхода не замедлили сказаться при исследовании общих проблем воздействия биотических, или живых, факторов на абиотические, или неорганические, условия. Так, оказалось, например, что состав морской воды во многом определяется активностью морских организмов. Растения, живущие на песчаной почве, значительно изменяют ее структуру. Живые организмы контролируют даже состав нашей атмосферы. Число подобных примеров легко увеличить, и все они свидетельствуют о наличии обратной связи между живой и неживой природой, в результате которой живое вещество в значительной мере меняет лик нашей Земли. Таким образом, биосферу нельзя рассматривать в отрыве от неживой природы, от которой она, с одной стороны, зависит, а с другой — сама воздействует на нее. Поэтому перед естествоиспытателями возникает проблема — конкретно исследовать, каким образом и в какой мере живое вещество влияет на физико-химические и геологические процессы, происходящие на поверхности Земли и в земной коре. Только подобный подход может дать ясное и глубокое представление о концепции биосферы. Такую задачу как раз и поставил перед собой выдающийся российский ученый В.И. Вернадский (1863-1945).

      Центральным пунктом в этой концепции является понятие о живом веществе, которое В.И. Вернадский определяет как совокупность живых организмов.

  Кроме растений и животных он включает сюда и человечество, влияние которого на геохимические процессы отличается от воздействия остальных живых существ, во-первых, своей интенсивностью, увеличивающейся с ходом геологического времени; во-вторых, тем воздействием, какое деятельность людей оказывает на остальное живое вещество.

  Это воздействие выражается прежде всего  в создании многочисленных новых видов культурных растений и домашних животных. Такие новые виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого вещества в неразрывной связи животного, растительного царства и культурного человечества, как работу единого целого.

   

      В состав биосферы входит не только живое вещество, но и разнообразные неживые тела, которые Вернадский называет косными (атмосфера, горные породы, минералы и т.д.), а также и биокосные тела, образованные из разнородных живых и косных тел (почвы, поверхностные воды и т.п.). Хотя живое вещество по объему и весу составляет незначительную часть биосферы, оно играет основную роль в геологических процессах, связанных с изменением облика нашей планеты.

  Поскольку живое вещество является определяющим компонентом биосферы, постольку можно утверждать, что оно может существовать и развиваться только в рамках целостной системы биосферы. Не случайно поэтому Вернадский считает, что «живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей.

  Исходной  основой существования биосферы и происходящих в ней биогеохимических процессов является астрономическое положение нашей планеты, и в первую очередь ее расстояние от Солнца и наклон земной оси к эклиптике, или к плоскости земной орбиты. Это пространственное расположение Земли определяет в основном климат на планете, а последний, в свою очередь, жизненные циклы всех существующих на ней организмов. Солнце является основным источником энергии биосферы и регулятором всех геологических, химических и биологических процессов на нашей планете. Эту ее роль образно выразил один из авторов закона сохранения и превращения энергии Ю. Майер (1814—1878), отметивший, что жизнь есть создание солнечного луча.

  Интенсивный рост промышленности в развитых странах сопровождается все возрастающим потреблением энергии и одновременно все увеличивающимися отходами производства. Загрязнение атмосферного воздуха, отравление водных источников, накопление радиоактивных отходов — неизбежные спутники жизни в крупных индустриальных центрах. Хищническая эксплуатация быстро сокращающихся запасов ископаемого топлива, погоня за прибылью любой ценой и особенно за счет нарушения экологического баланса в окружающей среде — все это с особой остротой выдвигает перед человечеством, и прежде всего перед промышленно развитыми странами, глобальную экологическую проблему сохранения динамического равновесия биосферы и нормального жизнеобеспечения людей. Поскольку сейчас наша цивилизация находится в процессе перехода от биосферы к ноосфере, когда разум становится определяющей силой общества, то вполне естественно задуматься над глобальной стратегией и перспективами дальнейшего развития мира. Хотя строить прогнозы всегда рискованно, тем не менее они необходимы для того, чтобы наметить основные направления, по которым с определенной степенью вероятности можно эффективно подготовиться к встрече будущего.

  Недостатка в таких прогнозах и сценариях будущего развития не ощущается. Одни из них имеют оптимистический характер и делают ставку главным образом на то, что новая технология будет принципиально отличаться от современной, станет безотходной, менее энергоемкой и более совершенной по другим параметрам. Другие считают, что при установившейся тенденции развития никакая технология не спасет общество, если люди будут непрерывно увеличивать потребление, предприниматели добиваться получения максимальной прибыли, а промышленно развитые страны неизменно стремиться к экономическому росту. Выход из надвигающегося экологического кризиса многие видят в радикальном изменении сознания людей, их нравственности, в отказе от взгляда на природу как объект бездумной эксплуатации ее человеком. Однако одного изменения и совершенствования взглядов и нравственности людей явно недостаточно для выхода из экологического кризиса и решения экологических проблем в будущем. Для этого необходимо прежде всего, чтобы общество в своей экономической деятельности учитывало не только непосредственные материальные и трудовые ресурсы, затрачиваемые на производство товаров и услуг, но и тот вред, который наносится окружающей среде в результате такого производства. Все признают, что рыночная экономика пока еще не научилась это делать. Очевидно, что экономия энергоносителей и других, быстро уменьшающихся запасов сырья, создание малоотходной и безотходной технологии, поиски и использование альтернативных источников энергии — все это во многом сможет помочь решению экологической проблемы и, по крайней мере, ослабить ее остроту.

  В этой связи заслуживает особого  внимания инициатива ученых и общественных деятелей, объединившихся в рамках Римского клуба, участники которого собрались в 1968 г. для обсуждения актуальных глобальных проблем человечества. Первый же доклад, «Пределы роста», представленный американскими учеными Д. и Д. Медоузами в 1972 г., вызвал сильнейший шок среди многих политических деятелей и представителей общественности. Основываясь на фактических данных и тенденциях экономического, технического и социального развития, авторы построили компьютерную модель современного общества, в которой были учтены связи между различными подсистемами общества и воздействие на них разных факторов роста. Они показали, что если потребление ресурсов и промышленный рост вместе с увеличением численности населения будут продолжаться прежними темпами, то будет достигнут «предел роста», за которым неизбежно последует катастрофа. Хотя многие специалисты критиковали доклад за то, что в нем не учитываются усилия общества по совершенствованию технологии, поискам новых источников энергии и сырья и т.д., но все вынуждены были признать, что в нем содержится обоснованная тревога за будущее человечества.

  Во  втором докладе, «Человечество на перепутье», представленном М. Месаровичем и Э. Пестелем, преодолены некоторые недостатки первого и намечены перспективы развития не столько мирового сообщества, сколько отдельных его регионов. Такой подход учитывает конкретные особенности и условия роста отдельных регионов мира, и поэтому он лучше подходит для решения экологических, энергетических, сырьевых и других глобальных проблем. В последующих докладах обсуждались более конкретные проблемы, касающиеся отношений со слаборазвитыми странами, переработки отходов, использования энергии и др.

  Деятельность  Римского клуба привлекла внимание широкой публики к актуальным глобальным проблемам современности, в частности к такой жизненно важной для всего человечества проблеме, как сохранение окружающей природной среды. Участники клуба наметили также возможные пути решения проблем, однако мало преуспели в том, чтобы убедить общество следовать их советам и сделать конкретные усилия по реализации выдвинутых ими программ и рекомендаций. 

  
  1. Вероятностный подход: квантовая механика.

  

   Понятия и принципы классической физики оказались неприменимыми не только к изучению свойств и особенностей пространства и времени, но еще в большей мере к исследованию физических свойств мельчайших частиц материи, которые называют микрообъектами. К ним относят электроны, протоны, нейтроны и подобные им объекты, которые часто называют также атомными частицами. Они образуют невидимый нами микромир, и поэтому свойства объектов этого мира совершенно не похожи на свойства объектов привычного, окружающего нас макромира. Планеты, звезды, галактики, кометы, квазары и другие небесные тела образуют мегамир.

Информация о работе Контрольная работа по "Концепции современного естествознания"