Черные дыры Вселенной

Автор работы: Пользователь скрыл имя, 16 Декабря 2011 в 09:15, реферат

Описание

Одними из самых загадочных объектов во вселенной являются черные дыры. Я не случайно выбрал эту тему. Черные дыры являются одновременно очень простыми и очень сложными в понимании. Черная дыра является порождением тяготения. Их тяжело изучать, т.к. они в данный момент времени недосягаемы для нас, но по расчетам математиков о них можно судить. Даже изучение этих объектов на расстоянии давалось с трудом (пока на орбиту не взошли рентгеновские обсерватории).

Содержание

I Введение.
II Основная часть.
Черная дыра – как последняя стадия эволюции звезд.
Обнаружение черных дыр.
Математическое описание.
Тесные двойные системы.
Гравитационные волны.
Разрушение звезд.
Черные дыры нагревают межгалактическое пространство.
Черная дыра может быть и “белой”.
Дыра во времени.
Небесная механика черных дыр.
Суперрадиация.
III Заключительная часть.
Заключение.
Использованные источники.

Работа состоит из  1 файл

физика.doc

— 339.00 Кб (Скачать документ)

Это значит, что  звезда, сжатая в сферу радиусом rg < 2GM / c2, перестанет излучать – свет покинуть ее не сможет. Во Вселенной возникнет черная дыра.

Несложно рассчитать, что Солнце (его масса 2·1033 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 1016 г/см3. Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра.

Казалось невероятным, что в природе могут найтись  силы, способные сжать звезду до столь ничтожных размеров. Поэтому  выводы из работ Митчелла и Лапласа  более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла.

Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварцшильд, проведя  анализ уравнений общей теории относительности  Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл (его решение обращается в бесконечность) при r = 0 и r = rg.

Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Точки, расположенные на сферической поверхности радиусом rg, образуют ту самую поверхность, с которой скорость убегания равна скорости света и за границей которой мы не сможем получить никакой информации.

Тесные  двойные системы.

В космосе часто  встречаются звездные пары, в которых  одним компонентом является звезда-гигант (или сверхгигант), а вторым –  маленькое компактное тело, которое  может являться или черной дырой  или нейтронной звездой. Имеются  косвенные доказательства существования черных дыр более чем в 10 тесных двойных системах. Об их наличии свидетельствует отсутствие проявлений твердой поверхности, характерных для нейтронных звезд, и наличие массы у невидимого компонента более 3 солнечных. Ее гравитационное поле может оказаться достаточно сильным, чтобы срывать вещество с нормальной дыры. Газ начинает отделяться от внешних слоев звезды и падать на невидимый спутник по спирали, причем сам газ будет доступен наблюдениям. Газ постоянно ускоряется, его частицы постоянно взаимодействуют между собой – в результате газ сильно разогревается и становится источником высокоэнергичного излучения в гамма и рентгеновском диапазонах. Следовательно, излучает не сама черная дыра, а газ на подходе к ней. Такое излучение невозможно принять с Земли, его не пропустит атмосфера. Его регистрируют при помощи внеатмосферных приемников рентгеновского излучения (космические обсерватории). Видимая звезда выдает наличие своего невидимого партнера своим движением. Она обращается вокруг “пустого” места. Одним из наиболее вероятных кандидатов в черные дыры является ярчайший источник рентгеновских лучей в созвездии Лебедя – Лебедь Х-1. Газовый диск с газовыми струями, излучающих рентген, огромная голубая звезда с массой не менее 10 солнечных, кружащая вокруг рентгеновского источника – вот портрет далекой звезда V 1343 в созвездии Орла, более известной как объект SS 433. До 1978г эта звезда не привлекала к себе особого внимания. Открытия последовали в 1979-1980гг и продолжаются до сих пор. Наблюдая за звездой ночью, американским и итальянским астрономам удалось обнаружить в спектре этой звезды 3 системы эмиссионных линий водорода и гелия. Кроме ярких основных и неподвижных линий имелись 2 системы линий, “гулявших” по спектру с периодом 163 дня. Эти смещения говорили о движении вещества в двух противоположных направлениях со скоростью, достигающей четверти скорости света ~ 78000км/с. Детальные наблюдения показали, что SS 433 – тесная затменная система, период обращения которой равен 13,1 суток. Видимая голубая звезда имеет температуру около 30000К и обладает светимостью, примерно в миллион раз превышающую светимость солнца. Она слишком велика, чтобы сохранить свою целостность в поле тяготения очень компактной второй звезды, и поэтому с нее постоянно перетекает вещество на соседку, образуя аккреционный диск. Наличие рентгеновского излучения окончательно подтвердило наличие компактного тела (черная дыра или нейтронная звезда), ведь только при аккреции на них испускается рентгеновское излучение. Компактный источник окружен непрозрачным и очень ярким слоем плазмы с температурой в сотни тысяч градусов. Рентгеновские спектры плазмы выявили мощнейшую ионизацию атомов железа, до гелие-водородоподобных состояний (т.е. вместо 26 электронов имеется только 1 или 2). Остальные выбиваются со своих орбит ударами релятивистских электронов или рентгеновскими квантами. Аккреционный диск раз в 13 дней затмевает звезду.

Другие рентгеновские  источники в нашей галактике  считаются черными дырами на основании  иных - например, спектроскопических - аргументов. К примеру, полагают, что гамма-излучение (с энергиями более 100кэВ) внутренних частей аккреционного диска могло бы свидетельствовать о наличии черной дыры, а не нейтронной звезды, так как жесткое излучение отражалось бы поверхностью нейтронной звезды и охлаждало диск. Если это действительно так, то многие "гамма - новые", в которых измерение массы невозможно (из-за отсутствия оптической компоненты или иных сложностей), могут быть также хорошими кандидатами в черные дыры. Особенно это относится к Новой Орла 1992 года (Nova Aquila 1992) и источнику 1 E 17407-2942, у которых наблюдаются также радиовыбросы - "джеты". Эти "микроквазары", в которых идет как аккреция, так и выброс

 
 

 
вещества, демонстрируют интересную связь высокоэнергичных явлений  на масштабах звезд и галактик.

 
 
 

Гравитационные  волны.

Теория тяготения  Эйнштейна предсказала существование  гравитационных волн. Они подобны электромагнитным, которые являются быстро меняющимся электромагнитным полем, “оторвавшимся” от своего источника и распространяющимся в пространстве с предельно большой скоростью — скоростью света. Точно так же гравитационные волны являются изменяющимся гравитационным полем, “оторвавшимся” от своего источника и летящим в пространстве со скоростью света.

Известно, чтобы  обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда  на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга. При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. Одним шариком не обойтись, т.к. если на шарик не действуют никакие посторонние силы, то он находится в поле гравитационной волны в состоянии невесомости. На шарике не ощущается никаких сил тяготения, и поэтому невозможно обнаружить проходящую гравитационную волну. Два шарика, находясь на некотором отдалении, подвергаются воздействию поля чуть-чуть по-разному, и между ними возникает относительное движение. Вот это относительное движение и можно измерить.

В случае электромагнитных волн для их обнаружения не обязательно  брать даже шарик — существуют разные типы электромагнитных антенн. В случае же гравитационных волн придуманы  тоже разные конструкции гравитационных антенн.

Но все выглядит относительно просто только теоретически. На самом деле в сколько-нибудь привычных  для нас условиях возникающие  гравитационные волны крайне слабы: они должны излучаться при ускоренных движениях массивных тел. Но даже при движении небесных тел излучение гравитационных волн ничтожно. Так, при движении планет в Солнечной системе излучается гравитационная энергия, равная мощности всего лишь сотни электрических лампочек. Хотя это число и может показаться большим по нашим земным меркам, оно ничтожно по сравнению, скажем, с мощностью светового излучения Солнца, которое в 1023 раз больше. Попытки же создать лабораторные излучатели гравитационных волн пока и вовсе обречены на неудачу.

Скажем, можно  сделать излучатель гравитационных волн в виде быстро вращающегося стержня. Если взять стальную болванку длиной 20 метров, массой 500 тонн и раскрутить ее до предела на разрыв центробежными силами (частота вращения при этом около 30 герц), то она будет излучать всего 10-22 доли эрга в секунду.

Приведенные примеры  показывают, насколько трудны попытки  обнаружения гравитационных волн. В  прямых экспериментах на Земле эти  волны пока не обнаружены, хотя в  разных лабораториях мира построены  и строятся уже десятки гравитационных антенн, предназначенных для приема волн тяготения из космоса. Некоторые астрономические наблюдения прямо показывают, что гравитационные волны излучаются при движении небесных тел. При движении планет или, например, движении звезд в двойных звездных системах излучаются гравитационные волны, уносящие энергию. Эти потери энергии обычно очень малы. Но чем больше масса движущихся небесных тел и меньше расстояние между ними, тем интенсивнее излучение. Потери энергии в системе двойной звезды приводят к постепенному сближению звезд и уменьшению периода их обращения вокруг центра масс. Конечно, это происходит крайне медленно, и тем не менее с помощью специальных способов наблюдения такое уменьшение периода в одном случае удалось зафиксировать, причем в точном согласии с предсказаниями теории Эйнштейна.

Вернемся к  движению тела вокруг черной дыры по круговой орбите. При этом будет происходит излучение гравитационных волн и  постепенное уменьшение радиуса  орбиты. Так будет продолжаться до тех пор, пока радиус не примет критического значения трех гравитационных радиусов. На меньших расстояниях движение уже неустойчиво. Следовательно, тело, достигнув критической орбиты, сделав еще несколько оборотов и излучив некоторое количество энергии, свалится с этого расстояния в черную дыру.

Какое общее  количество энергии излучит тело в виде гравитационных волн за все  время, пока оно двигалось вокруг черной дыры по окружности с медленно уменьшающимся радиусом? Излучение  происходит, как мы видели, крайне малоинтенсивно, но сам процесс этот длится чрезвычайно долго! Таким образом, полное количество излученной энергии будет велико. Известно, что при ядерных превращениях, например, водорода в гелий или в еще более тяжелые элементы, определенная доля массы превращается в энергию. Максимально во всех видах реакций эта доля может составить около одного процента. В случае же излучения гравитационных волн при движении вокруг черной дыры излучается энергия в шесть раз больше!

Гравитационные  волны крайне слабо взаимодействуют  с веществом. Поэтому выделяющуюся в виде гравитационных волн энергию очень трудно уловить и использовать для практических нужд.

Академик В.А. Фок был первым, кто обратил  внимание на возможность использования  астрофизических катастроф как  источника мощного гравитационного излучения (1948).Согласно современным расчетам, при слиянии двух нейтронных звезд излучается около 1045 Дж в виде всплеска гравитационного излучения, то есть около 1% от полной энергии (Е = mc2) двух звезд. Гравитационная волна растягивает и сжимает пространство. Если в ее поле есть две разнесенные системы координат, то волна вызывает их относительное колебательное движение. У гравитационной волны возможны две поляризации. В первой волна в течение полупериода сжимается по вертикали и растягивается по горизонтали, в следующий полупериод - наоборот. Вторая возможная поляризация сдвинута на 45° по отношению к первой. В настоящее время ведутся поиски гравитационных волн длиной от размера Вселенной до нескольких метров, иными словами, в диапазоне частот от 10-16 до 10Гц, то есть частотный диапазон поисков перекрывает более чем 20 порядков. Хорошая чувствительность уже достигнута или планируется в интервале частот от 10 до 10Гц, или на длинах волн от 30 тыс. км до 30 км. На этот диапазон рассчитаны проекты LIGO и VIRGO. На более низкие частоты - от 10-1 до 10-4 Гц гравитационного излучения (длины волн порядка расстояния от Земли до Солнца) - нацелен проект LISA - лазерная космическая антенна, которая, надеюсь, будет запущена в недалеком будущем.

Проект LIGO (Laser Interferometer Gravitational wave Observatory) - лазерная интерферометрическая гравитационно-волновая обсерватория - изначально национальный проект США. Проект VIRGO носит латинское название скопления галактик в созвездии Девы (примерно 30 Мпс от Земли), изначально итало-французский.

LISA (Laser Interferometer Space Antenna) - лазерно-интерферометрическая  антенна в космосе - совместный  проект Европейского космического  агентства и Национального управления  по аэронавтике и исследованию  космического пространства США.

LIGO/VIRGO - это, по  существу, сеть антенн относительно  высокочастотного диапазона. Она  включает две антенны LIGO - одна  в Хэнфорде, другая в Ливингстоне  (обе в США) и антенну VIRGO недалеко от Пизы (Италия). К сети  примыкают более скромные по размерам (и соответственно по ожидаемой чувствительности) антенна в Японии (ТАМА) и в северной части Германии (GEO-600). Необходимо использовать всю информацию, которая регистрируется этими антеннами, то есть всю сеть, чтобы получить максимум сведений о свойствах гравитационных волн и их источников.

Собственно детектор антенны представляет собой четыре массивных зеркала, сделанных либо из плавленного кварца, либо из сапфира, которые подвешены на тонких кварцевых  нитях длиной около 1 м . Все зеркала размещены в вакуумных камерах, соединенных вакуумными трубами. Расстояние между зеркалами в каждой паре 4 км. Когда гравитационная волна проходит, она сначала сдвигает одну пару зеркал и раздвигает другую, в следующий период - наоборот. Лазерный интерферометр регистрирует эти колебания.

Принцип использования  пары свободных масс-зеркал и лазерного  интерферометра для регистрации  их малых колебаний, вызванных гравитационной волной, предложен членом-корреспондентом  РАН В.И. Пустовойтом и профессором  М.Е. Герценштейном в 1962 г.

Несколько чисел  для иллюстрации: при расстоянии 4 км между зеркалами и амплитуде  волны 10-21 величина амплитуды относительных колебаний зеркал 4х10-16 см при оптимальной ориентации плеч антенны относительно источника. На прототипе LIGO, где расстояние между зеркалами составляло 40 м, после многих лет работы такая чувствительность при регистрации взаимных колебаний моделей зеркал уже достигнута. В 2002 г. в LIGO I при расстоянии между зеркалами 4 км чувствительность должна быть немного лучше, чем в прототипе. На следующем этапе (LIGO II) в 2006 г. чувствительность должна быть повышена: можно будет зарегистрировать амплитуду колебаний зеркал около 10-17 см.

Ясно, что достижение такой чувствительности - это очень  серьезная технологическая задача, ведь величина амплитуды колебаний в 10 тыс. раз меньше размера атомного ядра (10-13 длины оптической волны, или половина длины квантовой волновой функции 30-килограммового зеркала). Потребовалось весьма значительно усовершенствовать технологию высокочувствительных измерений, повысить стабильность лазеров, увеличить отражающую способность оптических зеркал, существенно развить квантовую теорию измерений и создать соответствующие технологии.

Информация о работе Черные дыры Вселенной