Осложнения при добыче нефти

Автор работы: Пользователь скрыл имя, 27 Февраля 2012 в 21:41, реферат

Описание

Технологическим режимом работы газовых скважин называется рассчитанное изменение во времени дебита, давления, температуры и состава газа на устье скважины при принятом условии отбора газа на забое скважин

Содержание

1. Вопрос №1. Технологические режимы работы газовых скважин 3
2. Вопрос №2. Гидромеханические методы воздействия на ПЗП 7
3. Вопрос №3. Осложнения при добыче нефти 9
Список литературы

Работа состоит из  1 файл

контрольная.doc

— 78.50 Кб (Скачать документ)


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

 

1.      Вопрос №1. Технологические режимы работы газовых скважин               3

2.      Вопрос №2. Гидромеханические методы воздействия на ПЗП                   7

3.      Вопрос №3. Осложнения при добыче нефти                                                 9

Список литературы                                                                                         12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вопрос №1. Технологические режимы работы газовых скважин 

Технологическим режимом работы газовых скважин называется рассчитанное изменение во времени дебита, давления, температуры и состава газа на устье скважины при принятом условии отбора газа на забое скважины. Технологический режим  работы газовых скважин зависит от типа газовой залежи (пластовая, массивная),  начального пластового давления и температуры, состава пластового газа, прочности пород газовмещающего коллектора и других факторов. Он устанавливается по данным режимных исследований скважин с использованием специального подземного и наземного оборудования и приборов.

В практике эксплуатации газовых скважин на различных месторождениях газ отбирают при следующих условиях на забое скважин:

1)  Режим постоянного градиента на забое скважины 

Режим постоянного градиента характерен для условий эксплуатации залежи, приуроченной к относительно неплотным породам, способным разрушаться при достаточно больших отборах газа из скважины. Во избежании этого скважину следует эксплуатировать при градиенте давления на забое менее допустимого. При определении допустимого градиента надо учитывать следующие особенности.

На месторождениях с рыхлыми коллекторами в ряде случаев из-за неправильного выбора глубины спуска и диаметра насосно-компрессорных труб отсутствие выхода песка на поверхность ещё не является подтверждением правильности выбора величины градиента. Кроме того, разрушение пласта при величине градиента, превышающего его допустимое значение, при котором не происходит разрушения, не является столь опасным, как это кажется на первый взгляд, так как для каждого значения заданного градиента существует область возможного разрушения, что приводит при значениях градиентов, превышающих допустимую величину, вначале к интенсивному выносу песка с последующему снижению его количества. Для заданной устойчивости коллектора нетрудно определять радиус зоны разрушения для различных величин градиента на забое.

При установлении технологического режима работы скважин по разрушению коллекторов, как правило, отсутствуют данные, позволяющие оценить устойчивость коллекторов. Поэтому необоснованная величина градиента давления приводит к большим погрешностям и, следовательно, либо к искусственному занижению производительности скважин, либо к накоплению песчано-глинистых пробок против продуктивного интервала.

 

 

2)  Режим постоянной депрессии на пласт (∆Р = рпл-рз = const) 

 Режим постоянной депрессии устанавливается при различных факторах, к которым относятся: близость подошвенной и контурной воды; деформация  коллектора при  значительных депрессиях; условия смятия колонны; возможность образования гидратов в пласте и стволе скважины и др.

В отличие от режима постоянного градиента, ограничиваемого величиной устойчивости пород к разрушению, пределы, ограничивающие величину депрессии, могут быть определены аналитическим путём независимо от того, по какому из факторов (подошвенная или контурная вода, деформация пласта, гидраты и так далее) выбирается постоянная депрессия. Кроме того, в отличие от режима постоянного градиента режим постоянной депрессии на пласт по ряду факторов (подошвенная или контурная вода, гидраты  др.) является переменной величиной в процессе разработки. Так, при наличии подошвенной воды сначала устанавливается величина допустимой депрессии в зависимости от вскрытой и газоносной мощности пласта, пластового давления и плотности воды и газа на данный момент времени. Но так как величина пластового давления, плотность воды и газа, а также положение ГВК являются переменными во времени, то устанавливаемая величина допустимой депрессии на пласт является функцией времени в процессе разработки. Изменение величины допустимой депрессии при газовом режиме является линейной функцией пластового давления. Если величина депрессии установлена, исходя из возможной деформации пласта, то эта величина является слабопеременной величиной во времени и её можно сохранить постоянной достаточно длительное время. Снижение депрессии приведёт в этом случае не к существенным осложнениям, а просто к некоторому изменению производительности скважин.

В целом режим постоянной депрессии несущественно отличается от режима постоянного градиента, и расчет основных показателей практически одинаков. В ряде случаев допустимая депрессия на скважинах устанавливается с самого начала с целью получения максимально возможного дебита. Иногда предельно допустимая депрессия хотя и устанавливается с самого начала эксплуатации, но достигается в процессе разработки, что связано с конструкцией скважин, устьевыми условиями и так далее. Этот случай близок к режиму постоянного дебита.

3)                 Режим постоянного забойного давления (рз=const)

Данный режим встречается довольно редко и в основном используется тогда, когда дальнейшее его снижение нежелательно из-за выпадения конденсата при разработке газоконденсатных месторождений. В отличие от предыдущих режимов  режим постоянного забойного давления является наихудшим вариантом с точки зрения темпа снижения производительности скважин.

Эксплуатация  газовых скважин  на режиме при рз=const характеризуется резким уменьшением во времени расхода газа, из-за чего необходимо прогрессивно увеличивать число скважин для поддержания заданного отбора газа с месторождения.  Режим постоянного забойного давления является временным (особенно при наличии газового режима залежи), и через определённый период эксплуатации требуется замена установленной величины на новое, более низкое значение или переход от указанного режима на какой-нибудь другой.

4) Режим постоянного дебита (Q = const) 

Этот режим наиболее выгоден, если величина дебита при этом соответствует максимальным способностям пласта и скважины. Режим постоянного дебита устанавливается при отсутствии опасности прорыва подошвенных и контурных вод, разрушения пласта (хотя бы до определённого предела, с которого начинается разрушение), превышения допустимой величины скорости потока. Это практически возможно для  крепких коллекторов до достижения определённой величины градиента на забое или величины устьевого или забойного давлений при заданной конструкции скважины  и системы сбора, осушки и очистки газа. Режим постоянного дебита на определённой стадии разработки, особенно вначале, может быть установлен при наличии коррозии забойного оборудования и насосно-компрессорных труб, наличия жидкостных или песчаных пробок и так далее. Величина дебита при этом режиме устанавливается темпом (скоростью) коррозии, пропускной способностью забойного оборудования, скоростью потока, обеспечивающей вынос жидкости и твердых частиц, потенциальной отдачей пласта и наземными условиями.

Дебит выбирают  с таким расчётом, чтобы не наблюдалось опасной вибрации оборудования на устье скважины. При этом наблюдается рост депрессии в пласте и с течением времени она достигает значительной величины. При достижении максимально допустимого значения депрессии необходимо для скважины устанавливать другой технологический режим, при котором не произойдет осложнений.

5) Режим постоянной скорости фильтрации на забое

Этот режим применяют в том случае, если имеется опасность разрушения несцементированного коллектора, а также в случае значительного выноса с забоя  и призабойной зоны глинистого раствора и твердых частиц, если прискважинное оборудование не в состоянии эффективно очистить струю газа. Данный режим наилучшим образом соответствует оптимальным условиям работы первой ступени сепарации. Если режим постоянного дебита отчасти соответствует конструкции скважины, то режим постоянной скорости фильтрации в полной мере относится  к призабойной зоне пласта, точнее, к стенке скважины.

6) Режим постоянного градиента по оси скважины 

Указанный режим применяется в крепких коллекторах при наличии подошвенной воды.

7) Режим постоянной скорости газа на устье

Если в составе пластового газа имеются компоненты, вызывающие коррозию колонны НКТ и оборудования устья скважины (СО2, кислоты жирного ряда), фактором, ограничивающим дебит скважины, служит допустимая линейная скорость коррозии. Условием отбора газа будет максимально допустимая скорость газа в верхнем поперечном сечении колонны НКТ, при которой линейная скорость коррозии имеет допустимое значение. Экспериментально установлено, что при скорости газового потока меньше 11 м/с линейная скорость коррозии, обусловленной наличием СО2 не превышает 0,1 мм/год.

Для поддержания заданного условия отбора газа на забое или устье скважины во время эксплуатации необходимо на головке скважины при индивидуальном регулировании или на групповом пункте сбора и подготовки газа при групповом методе регулирования скважин изменять дебит или давление газа в соответствии с расчетом.

Изменение дебита (давления) осуществляется при помощи различных технических средств:

1) нерегулируемыми штуцерами постоянного или переменного диаметра;

2) регулируемыми штуцерами;

3) регуляторами давления;

4) расширительными машинами.

Следует отметить, что режим постоянной скорости потока  на устье приводит к резкому снижению дебита скважины. Выбор более эффективного технологического режима при наличии агрессивных компонент связан с необходимостью применения труб с коррозийно-стойким покрытием, бурением скважин большого диаметра (с целью замены фонтанных труб на трубы большего диаметра в процессе разработки), а также использованием ингибиторов коррозии.

В условиях образования песчаной пробки, столба жидкости или гидратообразования технологический режим, обусловленный определённой скоростью на устье, может оказаться практически непригодным. Поэтому при необходимости выбора режима с постоянной скоростью потока необходимо проверять возможность образования гидратов и пробок в стволе скважины.

Вопрос №2. Гидромеханические методы воздействия на ПЗП

Гидравлический разрыв пласта (ГРП) заключается в образовании и расширении в пласте трещин при создании высоких давлений на забое жидкостью, закачиваемой в скважину. В образовавшиеся трещины нагнетают песок, чтобы после снятия давления трещина не сомкнулась. Трещины, образовавшиеся в пласте, являются проводниками нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин может достигать нескольких десятков метров, ширина их 1÷4 мм. После гидроразрыва пласта производительность скважины часто увеличивается в несколько раз.

Операция ГРП состоит из следующих этапов: закачки жидкости разрыва для образования трещин; закачки жидкости — песконосителя; закачки жидкости для продавливания песка в трещины.

Гидропескоструйная перфорация скважин – применяется для создания каналов, соединяющих ствол скважины с пластом при кислотной обработке скважины и других методах воздействия. Метод основан на использовании кинетической энергии и абразивных свойств струи жидкости с песком, истекающей с большой скоростью из насадок перфоратора и направленной на стенку скважины. За короткое время струя жидкости с песком образует отверстие или прорезь в обсадной колонне и канал или щель в цементном камне и породе пласта. Жидкость с песком направляется к насадкам перфоратора по колонне насосно-компрессорных труб с помощью насосов, установленных у скважины.

Щелевая разгрузка пласта

На основании современных представлений теоретической геомеханики прискважинной зоны продуктивного пласта после бурения скважины в прискважинной зоне создаются кольцевые сжимающие напряжения, существенно уменьшающие проницаемость прискважинной зоны. Кроме того, происходит снижение проницаемости прискважинной зоны за счёт осаждения в коллекторе твёрдой фазы промывочной жидкости.

Вторичное вскрытие продуктивного пласта производится при помощи гидропескоструйной перфорации за счет фиксированного перемещения специального перфоратора вдоль вертикальной оси скважины в интервале продуктивного пласта. В процессе работы вдоль оси скважины по обе стороны от ствола скважины в диаметрально противоположных направлениях на всю мощность продуктивного пласта создаются линейные горные выработки (щели) шириной каждая - диаметр скважины, длиной - 7-10 диаметров скважины.

Создаваемые щели преобразуют кольцевые сжимающие напряжения в прискважинной зоне в растягивающие напряжения. За счёт этого происходит разгрузка прискважинной зоны, обеспечивающей улучшение коллекторских свойств прискважинной зоны.

Резка абразивной жидкостью

Абразивные жидкости используются в бурении и гидромеханической резке уже многие годы. При абразивном бурении отверстие получается ровным, к тому же оно не засоряется обломками горных пород. В результате насыщенная песком жидкость свободно проходит сквозь цементные пробки, загрязненные зоны пласта и глинистые корки, проникая в невскрытые участки пласта. Благодаря набранной скорости, абразивная жидкость попадает в многочисленные пласты коллектора, создавая множество новых проходов. Выбирая оптимальное направление бурения, можно проводить недорогое стимулирование с помощью обычных методов перфорации. Поэтому, как альтернатива традиционному гидроразрыву, направленное абразивное бурение может использоваться, прежде всего, для расширения естественных природных трещин и создания новых

Информация о работе Осложнения при добыче нефти