Контроль качества ГИС

Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 17:19, курсовая работа

Описание

Одной из важнейших задач нефтепромысловой геофизики является повышение точности и достоверности количественной интерпретации промыслово-геофизических данных. Решение этой задачи возможно лишь при высокой точности скважинных измерений и воспроизводимости оценок параметров разреза, получаемых всем арсеналом технических средств. В настоящее время на геофизических предприятиях, осуществляющих промыслово-геофизические исследования в бурящихся нефтяных и газовых скважинах, в эксплуатационных находится большое количество разнотипных средств измерений (СИ).

Содержание

I. ВВЕДЕНИЕ
II. АНАЛИЗ СТРУКТУРНОЙ СХЕМЫ АППАРАТУРЫ
1. ПРОСТРАНСТВЕННАЯ КОМПОНОВКА ЭЛЕМЕНТОВ ЗОНДОВОГО УСТРОЙСТВА
2. СТРУКТУРНАЯ СХЕМА АППАРАТУРЫ
III. ПОДГОТОВКА АППАРАТУРЫ К ПРОВЕДЕНИЮ ГИС (НАСТРОЙКА, ПОВЕРКА, ГРАДУИРОВКА)
IV. ТЕХНОЛОГИЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ СКВАЖИНЫ
V. СТРУКТУРА СИСТЕМЫ КОНТРОЛЯ КАЧЕСТВА РЕЗУЛЬТАТОВ ГИС
VI. ДЕСТАБИЛИЗИРУЮЩИЕ ФАКТОРЫ И МЕТОДЫ СТАБИЛИЗАЦИИ
1. ТЕМПЕРАТУРНЫЕ ВЛИЯНИЯ
2. КВАРЦЕВАЯ СТАБИЛИЗАЦИЯ ЧАСТОТЫ
3. МЕХАНИЧЕСКИЕ ДЕФОРМАЦИИ ДЕТАЛЕЙ
4. НЕПОСТОЯНСТВО НАПРЯЖЕНИЙ ИСТОЧНИКА ПИТАНИЯ
5. ИЗМЕНЕНИЕ ВЛАЖНОСТИ И АТМОСФЕРНОГО ДАВЛЕНИЯ
6. СМЕНА ИЗНОШЕННЫХ ЧАСТЕЙ ГЕНЕРАТОРА
7. ВЛИЯНИЕ ПОСТОРОННИХ ПРЕДМЕТОВ
VII. ЗАКЛЮЧЕНИЕ
VIII. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Работа состоит из  1 файл

ГИС.doc

— 1.04 Мб (Скачать документ)

Кафедра общей и прикладной геофизики

 

 

 

 

 

 

 

Курсовая работа

по геофизическим исследованиям скважин

на тему:

Контроль качества ГИС

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Дубна, 2005

 

Содержание

 

I. ВВЕДЕНИЕ

II. АНАЛИЗ СТРУКТУРНОЙ  СХЕМЫ АППАРАТУРЫ

1. ПРОСТРАНСТВЕННАЯ КОМПОНОВКА  ЭЛЕМЕНТОВ ЗОНДОВОГО УСТРОЙСТВА

2. СТРУКТУРНАЯ СХЕМА  АППАРАТУРЫ

III. ПОДГОТОВКА АППАРАТУРЫ  К ПРОВЕДЕНИЮ ГИС (НАСТРОЙКА,  ПОВЕРКА, ГРАДУИРОВКА)

IV. ТЕХНОЛОГИЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ СКВАЖИНЫ

V. СТРУКТУРА СИСТЕМЫ  КОНТРОЛЯ КАЧЕСТВА РЕЗУЛЬТАТОВ  ГИС

VI. ДЕСТАБИЛИЗИРУЮЩИЕ ФАКТОРЫ И МЕТОДЫ СТАБИЛИЗАЦИИ

1. ТЕМПЕРАТУРНЫЕ ВЛИЯНИЯ

2. КВАРЦЕВАЯ СТАБИЛИЗАЦИЯ  ЧАСТОТЫ

3. МЕХАНИЧЕСКИЕ ДЕФОРМАЦИИ  ДЕТАЛЕЙ

4. НЕПОСТОЯНСТВО НАПРЯЖЕНИЙ  ИСТОЧНИКА ПИТАНИЯ

5. ИЗМЕНЕНИЕ ВЛАЖНОСТИ  И АТМОСФЕРНОГО ДАВЛЕНИЯ

6. СМЕНА ИЗНОШЕННЫХ  ЧАСТЕЙ ГЕНЕРАТОРА

7. ВЛИЯНИЕ ПОСТОРОННИХ  ПРЕДМЕТОВ

VII. ЗАКЛЮЧЕНИЕ

VIII. СПИСОК ИСПОЛЬЗОВАННОЙ  ЛИТЕРАТУРЫ

 

I. Введение

 

Одной из важнейших задач  нефтепромысловой геофизики является повышение точности и достоверности  количественной интерпретации промыслово-геофизических данных. Решение этой задачи возможно лишь при высокой точности скважинных измерений и воспроизводимости оценок параметров разреза, получаемых всем арсеналом технических средств. В настоящее время на геофизических предприятиях, осуществляющих промыслово-геофизические исследования в бурящихся нефтяных и газовых скважинах, в эксплуатационных находится большое количество разнотипных средств измерений (СИ). В силу многих причин – изготовления аппаратуры на предприятиях различных ведомств с разным техническим уровнем, отсутствия для отдельных типов аппаратуры необходимых средств метрологического контроля, нарушения правил эксплуатации аппаратуры и др. – качество геофизических измерений не всегда удовлетворяет требованиям нефтепромысловой геофизики. Для достижения единства и регламентированной точности скважинных измерений необходимо дальнейшее совершенствование технико-методических основ количественных приёмов оценки и контроля качества геофизических измерений.

Стандартизация результатов  геофизических измерений в скважинах может осуществляться несколькими путями. Один из них – традиционный путь метрологического обеспечения СИ с привлечением методом физического моделирования, сосредоточения физических моделей в испытательных центрах и передачи мер эталона образцовым и поверочным устройствам, являющимся средствами метрологического контроля геофизической аппаратуры в производственных условиях. В последние годы интенсивно развивались методологические основы другого приёма стандартизации промыслово-геофизической аппаратуры – с использованием разрезов специально обустроенных контрольных скважин. При этом подходе геофизические информационно-измерительные системы (ИИС) поверяются в динамическом режиме, т.е. в котором осуществляются реальные скважинные измерения.

Предлагаемая работа посвящена исследованию контроля качества такого метода, как высокочастотное индукционное каротажное изопараметрическое зондирование (ВИКИЗ), базирующегося на измерении относительных фазовых характеристик. Результаты интерпретации диаграмм ВИКИЗ в комплексе с данными других методов ГИС и петрофизической информацией позволяют определять коэффициент нефтегазонасыщения, литологию терригенного разреза, оценивать неоднородность коллекторских свойств на интервалах пористо-проницаемых пластов, выделять интервалы уплотнённых песчаников с карбонатным или силикатным цементов и др.

 

II. Анализ структурной схемы аппаратуры

 

Аппаратура ВИКИЗ обеспечивает измерение разностей фаз между  ЭДС, наведёнными в измерительных  катушках пяти электродинамически подобных трёхкатушечных зондов, и потенциала самопроизвольной поляризации ПС. Благоприятные условия – скважины, заполненные пресной промывочной жидкостью и промывочной жидкостью на нефтяной основе. Исследования не проводят в скважинах, заполненных сильно минерализованной промывочной жидкостью, удельное сопротивление которой менее 0,02 Омм. Метод может быть применён также в скважинах, обсаженных диэлектрическими трубами. Диапазон измерения удельных сопротивлений пород от 1 до 200 Омм.

1. Пространственная компоновка элементов зондового устройства

 

В аппаратуре ВИКИЗ используется набор из пяти трёхкатушечных зондов. Конструктивно зондовое устройство выполнено на едином стержне и  все катушки размещены соосно. Геометрические характеристики зондов представлены в таблице:

 

Схема зонда

Длина, м

База, м

Точка записи, м

Частота, МГц

 

И6 0,40 И5 1,60 Г5

2,00

0,40

3,28

0,875

 

И5 0,28 И4 1,13 Г4

1,41

0,28

2,88

1,750

 

И4 0,20 И3 0,80 Г3

1,00

0,20

2,60

3,500

 

И3 0,14 И2 0,57 Г2

0,71

0,14

2,40

7,000

 

И2 0,10 И1 0,40 Г1

0,50

0,10

2,26

14,000

 

ПС

   

3,72

   

 

Все генераторные и измерительные  катушки зондов меньшей длины  размещены между катушками двухметрового  зонда.

На рис. 2.1 показана схема размещения катушек на зондовом устройстве. Здесь принятые следующие обозначения: Г1, Г2, Г3, Г4, Г5 – генераторные катушки; И1, И2, И3, И4, И5, И6 – измерительные катушки.

 

Рис. 2.1. Пятизондовая система.

2. Структурная схема аппаратуры

 

Структурная схема скважинного  прибора представлена на рис. 2.2. Блок электроники обеспечивает поочерёдную работу зондов. Первой включается генераторная катушка Г1 и измеряется разность фаз между ЭДС, наведёнными в измерительных катушках И1, И2. Второй включается катушка Г2 и измеряется разность фаз между ЭДС, наведёнными в измерительных катушках И2, И3. Далее поочерёдно включаются генераторные катушки остальных зондов.

 

Рис. 2.2. Структурная схема скважинного прибора.

 

Электронная схема содержит: усилители мощности – 1-5; смесители – 6-11; аналоговый коммутатор – 12; перестраиваемый гетеродин – 13; устройство управления скважинным прибором – 14; усилители промежуточной частоты – 15, 16; опорный кварцевый генератор – 17; широкополосный фазометр – 18; передатчик телесистемы – 19; выходное устройство – 20; блок питания – 21.

Смесители расположены  в зондовом устройстве рядом с измерительными катушками. Там же установлен аналоговый коммутатор. Остальные элементы схемы расположены в блоке электроники.

Скважинный прибор подключается к наземной панели с помощью трёхжильного кабеля. При регистрации на компьютеризированную каротажную станцию функции наземной панели может выполнять соответствующая программа.

Наземная панель –  автономная микропроцессорная система, которая выполняет следующие  основные функции:

- обеспечивает питание  скважинного прибора;

- принимает цифровые  сигналы от скважинного прибора;

- учитывает сигналы  «нули воздуха» (фазовые сдвиги  в непроводящей среде);

- трансформирует принятые  сигналы в значения нормированной  разности фаз;

- преобразует результаты  обработки в аналоговые сигналы  (если используются аналоговые регистраторы);

- передаёт результаты  обработки по стандартному последовательному  интерфейсу RS-232;

- отображает на светодиодном  индикаторе коды текущих режимов  и результаты измерений.

Наземная панель состоит  из следующих блоков (рис. 2.3):

- микроконтроллера;

- формирователя входного  сигнала;

- 5-канального ЦАПа;

- интерфейса RS-232;

- энергонезависимого  ОЗУ;

- светодиодного индикатора;

- блока управления;

- фильтра сигнала ПС (ФПС);

- сетевого источника  питания;

- источника питания  для скважинного прибора.

Микроконтроллер обеспечивает общее управление панелью.

Формирователь сигнала  отделяет информационный сигнал от напряжения питания зонда (они передаются по одной жиле кабеля), а также преобразует его в последовательность прямоугольных импульсов с уровнями транзисторно-транзисторной логики.

 

Рис. 2.3. Структурная схема наземной панели.

Для аналоговых регистраторов 5-канальный ЦАП формирует напряжения постоянного тока, пропорциональные измеренным значениям разности фаз.

Интерфейс RS-232 предназначен для передачи измеренных значений в цифровом коде.

Энергонезависимое ОЗУ  обеспечивает хранение значений «нулей воздуха» скважинного прибора, которые  учитываются при каждом измерении.

Индикаторный светодиодный модуль отображает результаты измерений, а также коды текущих режимов работы.

Фильтр сигнала ПС осуществляет низкочастотную фильтрацию.

Сетевой источник питания  преобразует сетевое напряжение в ряд постоянных напряжений +5 В, +24 В, и -12 В, которые используются для питания собственно элементов панели.

Источник питания скважинного прибора преобразует выходное напряжение сетевого источника (+24 В) в напряжение постоянного тока (+140 В).

 

III. Подготовка аппаратуры к проведению ГИС (настройка, поверка, градуировка)

 

Самыми точными средствами воспроизведения и хранения единиц измерений являются эталоны. Эталон единицы – это средство измерений (СИ), обеспечивающее воспроизведение и хранение единиц с целью передачи их размера нижестоящим по поверочной схеме СИ, выполненное по особой спецификации и официально утверждённое в установленном порядке в качестве эталона. Первичные эталоны утверждаются в качестве государственных. Они воспроизводят единицу измерения с наивысшей точностью. В метрологической практике широко используются вторичные эталоны, значения которых устанавливаются по первичным. Для передачи размеров единиц рабочим средствам измерений применяются образцовые СИ. В зависимости от точности их подразделяют на разряды. Образцовые СИ 1-го разряда подлежат поверке непосредственно по эталонам, а 2-го, 3-го и последующих разрядов – по образцовым СИ более высоких разрядов.

Порядок передачи размеров единиц измерения регламентируется поверочными схемами. Поверочная схема представляет собой исходный документ, устанавливающий метрологическое соподчинение эталонов, образцовых СИ и порядок передачи размера единицы образцовым и рабочим СИ. В поверочных схемах указывают также метод поверки и применяемые для этого средства сравнения и измерения. Поверочные схемы подразделяют на государственные, ведомственные и локальные. Государственные поверочные схемы служат основанием для составления ведомственных и локальных поверочных схем и для разработки государственных стандартов на методы и средства поверки образцовых и рабочих средств измерений. Ведомственная поверочная схема представляет собой нормативно-технический документ ведомства, а локальная – нормативно-технический документ предприятия. Структура поверочной схемы и количество ступеней передачи единицы измерений от исходного до рабочих СИ определяются, с одной стороны, требуемой точностью рабочих СИ, их общим количеством и степенью рассредоточения по территории страны, с другой – точностными характеристиками существующих методик передачи единицы от уровня к уровню, которые зависят, в свою очередь, от погрешностей образцовых СИ и методик передачи единиц.

Особенности передачи единиц геофизических величин состоят в том, что, с одной стороны, практически отсутствуют государственные эталоны, воспроизводящие единицу измерения, а с другой – предъявляются высокие требования к точности рабочих СИ. Данные обстоятельства делают необходимым создание специальных калибровочных схем, имеющих в своей основе исходные образцовые СИ, аттестованные методом косвенных измерений, что диктуется необходимостью обеспечения требуемой достоверности и точности ГИС. В общем случае максимальная точность передачи размера единицы рабочим СИ была достигнута при непосредственной их поверке по исходному образцовому СИ. Однако подобная технология передачи размера единицы неприемлема, так как рабочие СИ ГИС эксплуатируются во многих предприятиях, территориально удалённых друг от друга и от места базирования исходного образцового СИ. Поэтому в поверочную схема вводят промежуточную ступень передачи размера единицы – образцовые СИ, размещаемые в крупных производственных предприятиях. При этом метрологические характеристики образцовых средств должны быть установлены таким образом, чтобы выполнялись соотношения:

ΔО СИ = ΔИО СИ1, ΔР СИ = ΔО СИ + Δ2,

где ΔО СИ, ΔИО СИ, ΔР СИ – пределы основной погрешности соответственно исходного образцового, образцовых и рабочего СИ; Δ1, Δ2 – погрешности передачи размера единицы первой и второй ступени поверочной схемы.

Учитывая, что для большинства геофизических параметров соотношение между пределами основной погрешности исходного образцового СИ и допустимой погрешностью рабочих СИ невелико,

ΔР СИ / ΔИО СИ = (4 – 3),

требования к методикам передачи размера должны быть достаточно жёсткими.

 

Рис. 3.1. Типовая поверочная схема скважинных средств измерений.

 

Типовая калибровочная схема для скважинных геофизических параметров приведена на рис. 3.1. В качестве исходных образцовых средств, как правило, используются стандартные образцы состава и свойств горных пород в виде моделей пластов, пересечённых скважиной, либо калибровочные установки.

Градуировкой средства измерений называется процедура определения градуировочной характеристики. Различают два типа градуировочных характеристик: типовые и индивидуальные. Типовые определяются для группы средств, выпускаемых серийно. Индивидуальные градуировочные характеристики определяются непосредственно для конкретного экземпляра. При построении градуировочных характеристик выполняют совместные измерения на входе и выходе СИ. Обычно измеряют несколько входных величин (x1, x2 … xm) и соответствующие выходные величины (y1, y2 … ym). По этим экспериментальным данным строят градуировочную характеристику.

Информация о работе Контроль качества ГИС