Геофизические методы изучения внутреннего строения Земли

Автор работы: Пользователь скрыл имя, 28 Апреля 2012 в 14:55, курсовая работа

Описание

Геофизические методы исследования земной коры (ГМИЗК), называемые по-разному: разведочная и скважинная; прикладная и промысловая; региональная, разведочная и геофизические исследования скважин (или каротаж), - это научно-прикладной раздел геофизики, предназначенный для изучения земной коры мощностью 35 - 70 км на суше и 5 - 10 км под дном акваторий океанов и морей.

Работа состоит из  1 файл

ог курсач - копия.docx

— 361.26 Кб (Скачать документ)

Процесс подобной регенерации длится до тех пор, пока рассеивание энергии вследствие вязкости ядра и его электрического сопротивления не компенсируется добавочной энергией вихревых токов и другими  причинами.

В первом приближении  магнитное поле Земли может быть уподоблено полю намагниченного шара или полю магнитного диполя Tдип, расположенного в области центра Земли, ось которого по отношению к оси вращения Земли составляет 11°. Места выхода продолжений оси этого диполя на поверхность Земли называют геомагнитными полюсами Земли. Область выхода южного конца оси диполя носит название северного магнитного полюса, а область выхода северного окончания оси диполя – южного. Северный магнитный полюс находится на 72° с.ш. и 96° з. д. в 1400 км от северного географического полюса Земли.

Многочисленными наблюдениями значений магнитного поля Земли показано, что в среднем  полный вектор напряженности Т изменяется от 0,66 105 нТл на полюсах до 0,33 105 нТл в районе экватора. При этом вертикальная составляющая Z уменьшается от 0,66 105 нТл до нуля, а горизонтальная составляющая Нувеличивается от нуля до 0,33 105 нТл. Детальное изучение магнитных свойств горных пород различного возраста на разных континентах установило миграцию (изменение местоположения) магнитных полюсов и их инверсию, т. е. смену знаков (направления), происходящую с периодом от 0,5 до нескольких десятков миллионов лет. 

 

Основные  магнитные параметры горных пород

 

Основным  магнитным параметром горных пород  является магнитная восприимчивость - χ. χ является коэффициентом пропорциональности между интенсивностью индуктивного намагничения I, и напряженностью намагничивающего поля: Ii= χT. Магнитную восприимчивость измеряют в 10-5 ед. СИ. Магнитная восприимчивость горных пород изменяется в широких пределах – от 0 до 10 ед. СИ.

По магнитным  свойствам все вещества делятся  на три группы: диамагнитные, парамагнитные  и ферромагнитные. У диамагнитных пород магнитная восприимчивость очень мала (10-5 ед. СИ) и отрицательна, их намагничение направлено против намагничивающего поля. К диамагнетикам относятся многие минералы и горные породы, например, кварц, каменная соль, мрамор, нефть, графит, золото, серебро, свинец, медь и др. У парамагнитныхпород магнитная восприимчивость положительна и также невелика. К парамагнетикам относится большинство осадочных, метаморфических и изверженных пород. Особенно большой и положительной χ (до нескольких единиц СИ) характеризуются ферромагнитные минералы, к которым относятся магнетит, титаномагнетит, ильменит и пирротин.

Магнитная восприимчивость  большинства горных пород определяется, прежде всего, присутствием и процентным составом ферромагнитных минералов Среди изверженных пород наибольшей магнитной восприимчивостью обладают ультраосновные и основные породы, слабо- или умеренномагнитны кислые породы. У метаморфических пород магнитная восприимчивость обычно ниже, чем у изверженных. Осадочные породы, за исключением некоторых песчаников и глин, практически немагнитны.

Диапазон  изменений иагнитной восприимчивости χ 105 ед. СИ (среднее) некоторых инералов, горных пород следующие: кварц – 10, кальцит 7–12, гипс – 12, уголь – 25, сфалерит – 750, пирит 50–5 000, гематит 500–50 000, пирротин 103–107, ильменит 5.105–5-106, магнетит 106–107, известняк 25–3500, песчаник 0–20000, гнейс 100–20000, гранит 0–40000, диабаз 1000–15000, габбро 1000–100000, базальт 30–150000, перидотит 90000–200000, осадочные (среднее) 0–5000, метаморфические (среднее) 0–75000, кислые изверженные (среднее) 50–80000, основные изверженные (среднее) 60–120000.

Горные породы, слагающие геологические структуры, залегают среди вмещающих пород, и поэтому практически так  же как и в гравиразведке, нас интересуют не абсолютные значения магнитной восприимчивости изучаемых структур χстр, а только ее изменения или так называемая эффективная магнитная восприимчивость Δχ= χстр – χ0, где χ0 – магнитная восприимчивость вмещающих пород. Значение Δχ в зависимости от геологической ситуации может изменяться в широких пределах и быть как отрицательным, так и положительным. Благодаря отличию Δχ от нуля и возникают магнитные аномалии.

Важным магнитным  параметром горных пород, содержащих ферромагнитные минералы, является остаточная намагниченность In, т. е. специфическое свойство пород, несущее в себе информацию об изменении магнитной восприимчивости при изменении величины намагничивающего поля и температуры. С увеличением температуры магнитная восприимчивость у ферромагнетиков возрастает, достигая максимума при критической температуре или точке Кюри, которая у разных минералов изменяется от 400 до 700 °С. Когда температура превышает точку Кюри, магнитная восприимчивость уменьшается практически до нуля. Следствием этого является принципиальное ограничение глубинности магниторазведки, так как с глубиной температура возрастает и на глубине 20–50 км в зависимости от строения, величины теплового потока и теплопроводных свойств горных пород достигает точки Кюри. Благодаря так называемой коэрцитивной силе ферромагнитные минералы, остывая, сохраняют остаточную намагниченность In. Она характеризуется отношением Q= In / Ii , которое изменяется от 0 до 100 и может быть как положительным, так и отрицательным. Значение Q велико для ферромагнитных минералов, меньше для магматических пород, еще меньше для метаморфических и близко к нулю для осадочных пород.

Основной  вклад в создание аномалий магнитного поля вносят ферромагнитные минералы и содержащие их горные породы. Так как в целом магнитная восприимчивость горных пород изменяется в больших пределах (в миллионы раз), то интенсивность аномалий магнитного поля варьирует от долей до сотен тысяч нанотесл. Для регистрации подобного поля необходима специальная аппаратура, имеющая и высокую чувствительность, и большой динамический диапазон измерений.  

 

Основные  задачи магниторазведки

 

Земля, как  космическое тело определенного  внутреннего строения, генерирует постоянное магнитное поле, называемое нормальным или первичным. Многие горные породы и руды обладают магнитными свойствами и способны под воздействием этого  поля приобретать намагниченность  и создавать аномальные или вторичные  магнитные поля. Выделение этих аномальных полей из наблюденного или суммарного геомагнитного поля, а также их геологическое истолкование является целью магниторазведки.

Магнитные вариации, обусловленные магнитными минералами, используются для поиска месторождений  железных руд и пирротина, а также  связанных с ними сульфидных руд. Исследования магнитных вариаций, создаваемых породами фундамента, позволяют изучать строение вышележащих слоев земной коры. При поисках нефтегазоносных толщ методами магниторазведки определяются глубина залегания, площадь и строение осадочных бассейнов. Магнитным методом измеряется магнитная восприимчивость пород. Важный железорудный минерал магнетит характеризуется самой высокой магнитной восприимчивостью (в 2-6 раз выше, чем у двух других также высокомагнитных минералов - ильменита и пирротина). Поскольку магнетит имеет довольно широкое распространение, изменение геомагнитного поля обычно связывают с присутствием этого минерала в составе горных пород. Магнитные минералы, сопряженные с изверженными породами фундамента, имеют гораздо более высокую магнитную восприимчивость, чем породы осадочного чехла. Этим обусловлены контрасты их намагниченности. В последние годы на основе изучения намагниченности пород океанического дна получено много новых сведений об истории Земли, особенно о формировании океанических бассейнов и положении материков в далеком геологическом прошлом. Породы часто сохраняют остаточную намагниченность, соответствующую геомагнитному полю времени их формирования. Таким образом, остаточная намагниченность представляет собой своеобразную «запись» изменений магнитного поля Земли на протяжении ее истории. На основе магнитных исследований подтверждено, что по мере того, как наращивались срединно-океанические хребты, происходило расширение океанических бассейнов. Магнитная съемка обычно проводится с самолетов при помощи магнитометров. В первых аэромагнитных приборах использовались измерительные средства, разработанные во время Второй мировой войны для обнаружения подводных лодок.


От других методов разведочной геофизики  магниторазведка отличается наибольшей производительностью, особенно в аэроварианте. Магниторазведка является эффективным методом поисков и разведки железных руд. Однако ее широко применяют и при геологическом картировании, структурных исследованиях и поисках другихполезных ископаемых.

 

Электроразведка

 

Электрическая, или электромагнитная, разведка (электроразведка) изучает внутреннее строение Земли и геологической среды, поиска полезных ископаемых на основе исследования различных естественных и искусственных электромагнитных полей. Электроразведка основана на дифференциации горных пород по электромагнитным свойствам. Характер электромагнитных полей, обусловленных как искусственными, так и естественными источниками, определяется геоэлектрическим строением изучаемого участка.

Электроразведка объединяет физические методы исследования геосфер Земли, поисков и разведки полезных ископаемых, основанные на изучении электромагнитных полей, существующих в Земле в силу естественных космических, атмосферных или физико-химических процессов или созданных искусственно. Геоэлектрика изучает изменяющуюся с глубиной электропроводность Земли путем наблюдений за изменениями магнитного поля.

Теоретические основы электроразведки

Физико-математическая теория электроразведки  базируется на теории электромагнитного  поля и, в частности, на теории постоянных и переменных электромагнитных полей. Подобно тому как в основе теории грави- имагниторазведки лежат законы Ньютона и Кулона, в основе теории электроразведки лежат уравнения Максвелла. Если геоэлектрический разрез известен, то с помощью дифференциальных уравнений, получаемых из системы уравнений Максвелла, и физических условий решают прямые задачи электроразведки для ряда физико-геологических моделей среды, т.е. получают аналитические выражения для тех или иных компонентов поля над такими моделями. Если эти компоненты получены в результате электроразведки, то на основе прямых задач решают обратные задачи электроразведки, т.е. определяют те или иные параметры модели. Таким образом, при решении прямых и обратных задач электроразведки, прежде всего, имеют дело с геоэлектрическим разрезом, который определяет электромагнитные свойства и геометрические параметры среды.

 

 

Электромагнитные поля могут быть:

  1. установившимися, т.е. существующими свыше 1 с, постоянными и переменными (гармоническими или квазигармоническими) частотой от миллигерц (1 мГц=10-3 Гц) до петагерц (1 ПГц=1015 Гц);
  2. неустановившимися, импульсными с длительностью импульсов от микросекунд до секунд.

Взаимодействие  вариаций магнитного и электрического полей, обусловленных как естественными, так и искусственно индуцированными  токами, используется в магнитотеллурическом зондировании при разведке полезных ископаемых и для изучения строения нижней части коры и верхней мантии.

Некоторые геологические  объекты в определенных условиях способны создавать собственные  электрические поля. По выявленной электромагнитной аномалии можно делать выводы, направленные на решение поставленных задач.

Используемые  гармонические поля можно разделить  на инфразвуковые, звуковые, радиоволновые, изучаемые в электроразведке, и  микрорадиоволновые, на которых основаны методы терморазведки. Измеряемыми параметрами поля являются амплитуды и фазы электрических Е и магнитных Н полей, а при терморазведке – температуры Т.

Интенсивность и структуру естественных полей  определяют природные факторы и  электромагнитные свойства горных пород. Для искусственных полей она  зависит от этих же свойств горных пород, интенсивности и вида источника, а также способов возбуждения. Последние бывают гальваническими, когда поле в Земле создают с помощью тока, пропускаемого через электроды-заземлители; индуктивными, когда питающий ток, проходя по незаземленному контуру (петля, рамка), создает в среде электромагнитное поле за счет индукции, и смешанными (гальваническими и индуктивными).  

 

Осовные принципы и задачи электроразведки

 

К электромагнитным свойствам горных пород относятся  удельное электрическое сопротивление ρ, величина, ей обратная, – удельная электропроводность (γ = 1ρ), электрохимическая активность α, поляризуемость η, диэлектрическая ε и магнитная μ проницаемости, а также пьезоэлектрические модули d. Электромагнитными свойствами геологических сред и их геометрическими параметрами определяются геоэлектрические разрезы.Геоэлектрический разрез однородного по тому или иному электромагнитному свойству полупространства принято называть нормальным, а неоднородного— аномальным.

Изменение глубинности электроразведки достигают изменением мощности источников и способов создания поля. Однако ею можно управлять также дистанционными и частотными приемами. Сущность дистанционного приема увеличения глубинности сводится к увеличению расстояния между источником поля и точками, в которых его измеряют. Это приводит к увеличению глубинности разведки, так как увеличивается объем среды, в которой поле распространяется, а его искажение глубинными неоднородностями проявляется на больших расстояниях от источника. Частотный принцип увеличения глубинности основан на скин-эффекте, т.е. прижимании поля к поверхности Земли в слое тем меньшей толщины, чем выше частота гармонического поля f и меньше время t при импульсном создании поля. Наоборот, чем меньше частота, больше период колебания T=1/f и больше время распространения (диффузии) поля, называемого также временем становления поля или переходного процесса, тем больше глубинность разведки. В целом глубинность электроразведки изменяется от десятков километров на инфранизких частотах до десятков сантиметров на частотах гигагерцы (ГГц) – тетрагерцы (ТГц).

Информация о работе Геофизические методы изучения внутреннего строения Земли