Производство биогаза

Автор работы: Пользователь скрыл имя, 03 Января 2011 в 14:00, реферат

Описание

Метановое «брожение», или биометаногенез, - давно известный процесс превращения биомассы в энергию. Он был открыт в 1776 г. Вольтой, который установил наличие метана в болотном газе. Биогаз, получающийся в ходе этого процесса, представляет собой смесь из 65% метана, 30% углекислого газа, 1% сероводорода (Н2S) и незначительных количеств азота, кислорода, водорода и закиси углерода. Болотный газ дает пламя синего цвета и не имеет запаха. Его бездымное горение причиняет гораздо меньше неудобств людям по сравнению со сгоранием дров, навоза жвачных животных или кухонных отбросов. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии 16,8 м3 природного газа, 20,8 л нефти или 18,4 л дизельного топлива.

Содержание

1. ВВЕДЕНИЕ 3стр.
2. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПРОИЗВОДСТВО БИОГАЗА 4стр.
3. УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ БИОГАЗА 4стр.
4. ВИТАМИНЫ-МИНЕРАЛЫ 7стр.
5. ЗАКЛЮЧЕНИЕ 8стр.
6. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 9стр.

Работа состоит из  1 файл

реферат по биотехнологии.doc

— 74.00 Кб (Скачать документ)

      Федеральное государственное образовательное  учреждение высшего профессионального  образования

      « Московская государственная академия ветеринарной медицины и биотехнологии  имени К.И. Скрябина» 
     
     

      Кафедра Биотехнологии 

      Реферат на тему:

      Производство  биогаза. 
     
     
     
     
     
     
     
     

                    Выполнила студентка ФЗТА

                    5 курса 5 группы

                    Бирюкова  Г.А. 

      Москва 2007 год. 
     

Оглавление: 

  1. ВВЕДЕНИЕ          3стр.
  2. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПРОИЗВОДСТВО БИОГАЗА   4стр.
  3. УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ БИОГАЗА     4стр.
  4. ВИТАМИНЫ-МИНЕРАЛЫ       7стр.
  5. ЗАКЛЮЧЕНИЕ         8стр.
  6. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ     9стр.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   ВВЕДЕНИЕ 

   Метановое «брожение», или биометаногенез, - давно  известный процесс превращения  биомассы в энергию. Он был открыт в 1776 г. Вольтой, который установил  наличие метана в болотном газе. Биогаз, получающийся в ходе этого процесса, представляет собой смесь из 65% метана, 30% углекислого газа, 1% сероводорода (Н2S) и незначительных количеств азота, кислорода, водорода и закиси углерода. Болотный газ дает пламя синего цвета и не имеет запаха. Его бездымное горение причиняет гораздо меньше неудобств людям по сравнению со сгоранием дров, навоза жвачных животных или кухонных отбросов. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии 16,8 м3 природного газа, 20,8 л нефти или 18,4 л дизельного топлива.

   Биометаногенез  осуществляется в три этапа: растворение  и гидролиз органических соединений, ацидогенез и метаногенез. В энергоконверсию  вовлекается только половина органического  материала—1800 ккал/кг сухого вещества по сравнению с 4000 ккал при термохимических процессах, но остатки, или шлаки, метанового «брожения» используются в сельском хозяйстве как удобрения. В процессе биометаногенеза участвуют три группы бактерий. Первые превращают сложные органические субстраты в масляную, пропионовую и молочную кислоты; вторые превращают эти органические кислоты в уксусную кислоту, водород и углекислый газ, а затем метанообразующие бактерии восстанавливают углекислый газ в метан с поглощением водорода, который в противном случае может ингибировать уксуснокислые бактерии. В 1967 г. Брайант и др. установили, что уксуснокислые и метанообразующие микроорганизмы образуют симбиоз, который ранее считался одним микробом и назывался Methanobacillus omelianskii.

   Для всех метанобактерий характерна способность к росту в присутствии водорода и углекислого газа, а также высокая чувствительность к кислороду и ингибиторам производства метана. В природных условиях метанобактерии тесно связаны с водородобразующими бактериями: эта трофическая ассоциация выгодна для обоих типов бактерий. Первые используют газообразный водород, продуцируемый последними; в результате его концентрация снижается и становится безопасной для водородобразующих бактерий.

     Отходы пищевой промышленности  и сельскохозяйственного производства характеризуются высоким содержанием углерода (в случае перегонки свеклы на 1 л отходов приходится до 50 г углерода), поэтому они лучше всего подходят для метанового «брожения», тем более, что некоторые из них получаются при температуре, наиболее благоприятной для этого процесса. Желательно перемешивать суспензию сбраживаемых веществ, чтобы воспрепятствовать расслаиванию, которое подавляет брожение. Твердый материал необходимо раздробить, так как наличие крупных комков препятствует образованию метана. Обычно длительность переработки навоза крупного рогатого скота составляет две—четыре недели. Двухнедельной переработки при температуре 35° С достаточно, чтобы убить все патогенные энтеробактерии и энтеровирусы, а также 90% популяции Ascaris lumbricoides и Ancylostoma.

   Биогаз - это газообразный продукт, получаемый в результате анаэробной  ферментации органических веществ самого разного происхождения, при температуре 30-370С. В этих условиях под действием имеющихся в биомассе бактерий часть органических веществ разлагается с образованием метана (60-70%), углекислого газа (30-40%), небольшого количества сероводорода (0-3%), а также примесей водорода (аммиака и окислов азота). Биогаз не имеет неприятного запаха. Теплота сгорания 1 м3 газа достигает 25 МДж, что эквивалентно сгоранию 0,6 л бензина, 0,85 л спирта, 1,7 кг дров или использованию 1,4 кВт/ электроэнергии.

   В среднем 1 кг органического вещества, биологически разложимого на 70%, производит 0,18 кг метана, 0,32 кг углекислого газа, 0,2 кг воды и 0,3 кг неразложимого остатка.

   ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПРОИЗВОДСТВО БИОГАЗА

   Поскольку разложение органических отходов происходит за счет деятельности определенных типов  бактерий, существенное влияние на него оказывает окружающая среда. Так, количество вырабатываемого газа в значительной степени зависит от температуры: чем теплее, тем выше скорость и степень ферментации органического сырья. Именно поэтому, вероятно, первые установки для получения биогаза появились в странах с теплым климатом. Однако применение надежной теплоизоляции, а иногда и подогретой воды, позволяет освоить строительство генераторов биогаза в районах, где температура зимой опускается до –20о С.

   Существуют  определенные требования и к сырью: оно должно быть подходящим для развития бактерий, содержать биологически разлагающееся органическое вещество и в большом количестве воду (90-94 %). Желательно, чтобы среда была нейтральной и без веществ, мешающих действию бактерий: например, мыла, стиральных порошков, антибиотиков.

   Для получения биогаза можно использовать растительные и хозяйственные отходы, навоз, сточные воды и т. п. В процессе ферментации жидкость в резервуаре имеет тенденцию к разделению на 3 фракции. Верхняя – корка, образованная из крупных частиц, увлекаемых поднимающимися пузырьками газа, через некоторое время может стать достаточно твердой и будет мешать выделению биогаза. В средней части ферментатора скапливается жидкость, а нижняя, грязеобразная фракция выпадает в осадок.

   Бактерии  наиболее активны в средней зоне. Поэтому содержимое резервуара необходимо периодически перемешивать – хотя бы один раз в сутки, а желательно – до шести раз. Перемешивание может осуществляться с помощью механических приспособлений, гидравлическими средствами (рециркуляция под действием насоса), под напором пневматической системы (частичная рециркуляция биогаза) или с помощью различных методов самоперемешивания.

   УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ БИОГАЗА

   В Румынии генераторы биогаза получили широкое распространение. Одна из первых индивидуальных установок была введена в эксплуатацию еще в декабре 1982 года. С тех пор она успешно обеспечивает газом 3 соседствующие семьи, имеющие каждая по обычной газовой плите с тремя конфорками и духовкой.

   Ферментатор находится в яме диаметром  около 4 м и глубиной 2 м (объем  примерно 25 м3), выложенной изнутри кровельным железом, сваренным дважды: сначала электрической сваркой, а затем, для надежности, газовой. Для антикоррозионной защиты внутренняя поверхность резервуара покрыта смолой. Снаружи верхней кромки ферментатора сделана кольцевая канавка из бетона глубиной примерно 1 м, выполняющая функцию гидрозатвора; в этой канавке, заполненной водой, скользит вертикальная часть колокола, закрывающего резервуар. Колокол высотой около 2,5 м – из листовой двухмиллиметровой стали. В верхней его части и собирается газ.

   Автор этого проекта выбрал вариант  собирания газа в отличие от других установок с помощью трубы, находящейся  внутри ферментатора и имеющей 3 подземных  ответвления – к трем хозяйствам. Кроме того, вода в канавке гидрозатвора проточная, что предотвращает обледенение в зимнее время.

   Ферментатор загружается примерно 12 м3 свежего навоза, поверх которого выливается коровья моча (без добавления воды). Генератор начинает работать через 7 дней после наполнения.

   Похожую компоновку имеет еще одна установка. Ее ферментатор сделан в яме, имеющей квадратное поперечное сечение размерами 2х2 м. Яма облицована железобетонными плитами толщиной 10-12 см, оштукатурена цементом и покрыта для герметичности смолой. Канавка гидрозатвора глубиной около 50 см также бетонная, колокол сварен из кровельного железа и может на четырех «ушках» свободно скользить по четырем вертикальным направляющим, установленным на бетонном резервуаре. Высота колокола примерно 3 м, из которых 0,5 м погружено в канавку.

   При первом наполнении в ферментатор было загружено 8 м2 свежего коровьего навоза, а сверху залито примерно 400 л коровьей мочи. Через 7-8 дней установка уже полностью обеспечивала владельцев газом.

   Аналогичную конструкцию имеет и генератор  биогаза, рассчитанный на прием 6 м3 смешанного навоза (от коров, овец и свиней). Этого оказалось достаточно, чтобы обеспечить нормальную работу газовой плиты с тремя конфорками и духовкой.

   Еще одна установка отличается любопытной конструктивной деталью: рядом с  ферментатором уложены присоединенные к нему с помощью Т-образного шланга три большие тракторные камеры, соединенные и между собой. В ночное время, когда биогаз не используется и накапливается под колоколом, возникает опасность, что последний под действием избыточного давления опрокинется. Резиновый резервуар служит дополнительной емкостью (рис. 2). Ферментатора размером 2х2х1,5 м вполне достаточно для работы двух горелок, а при увеличении полезного объема установки до 1 м3 можно получить количество биогаза достаточное и для обогрева жилища. Особенность этого варианта установки – устройство колокола Æ 138 см и высотой 150 см из прорезиненного полотна, применяемого для изготовления надувных лодок. Ферментатор представляет собой металлический резервуар Æ 140х300 см и имеет объем 4,7 м3. Колокол вводится в находящийся в ферментаторе навоз на глубину не менее 30 см для обеспечения гидравлического заслона выходу биогаза в атмосферу. В верхней части разбухающего резервуара предусмотрен кран, соединенный со шлангом; по нему газ поступает к газовой плите с тремя конфорками и колонке для нагрева воды. Чтобы обеспечить оптимальные условия для работы ферментатора, навоз смешивается с горячей водой. Наилучшие результаты установка показала при влажности сырья 90 % и температуре 30-35о.

   Для обогрева ферментатора используется и эффект теплицы. Над емкостью сооружается металлический каркас, который покрывают полиэтиленовой пленкой: при неблагоприятных погодных условиях она сохраняет тепло и позволяет заметно ускорить процесс разложения сырья.

   Как уже отмечалось, решающую роль в развитии процесса ферментации играет температура: нагрев сырья с 15о до 20о может вдвое увеличить производство энергоносителя. Поэтому часть генераторов имеет специальную систему подогрева сырья, однако большинство установок не оборудовано ею; они используют лишь тепло, выделяемое в процессе самого разложения органических веществ. Одним из важнейших условий нормальной работы ферментатора является наличие надежной теплоизоляции. Кроме того, необходимо свести к минимуму потери тепла при очистке и наполнении бункера ферментатора.

   Нужно помнить также о необходимости  обеспечения биохимического равновесия. Иногда темпы производства бактериями кислот выше, чем темпы их потребления бактериями второй группы. В этом случае кислотность массы растет, а выработка биогаза снижается. Положение может быть исправлено либо уменьшением ежедневной порции сырья, либо увеличением его растворимости (по возможности, горячей водой), либо, наконец, добавкой нейтрализующего вещества – например, известкового молока, стиральной или питьевой соды.

   Производство  биогаза может уменьшиться за счет нарушения соотношения между  углеродом и азотом. В этом случае в ферментатор вводят вещества, содержащие азот, - мочу или в небольшом количестве соли аммония, используемые обычно в качестве химических удобрений (50-100 г на 1 м3 сырья).

   Следует помнить, что высокая влажность  и наличие сероводорода (содержание которого в биогазе может достигать 0,5 %) стимулируют повышенную коррозию металлических частей установки. Поэтому состояние всех остальных элементов ферментатора следует регулярно контролировать и в местах повреждений тщательно защищать: лучше всего свинцовым суриком – в один или два слоя, а затем еще двумя слоями любой масляной краски.

   В качестве трубопровода для транспортировки  биогаза от выпускного патрубка в  верхней части колокола установки  до потребителя могут использоваться как трубы (металлические или  пластмассовые), так и резиновые  шланги. Их желательно вести в глубокой траншее, чтобы исключить разрывы из-за замерзания зимой конденсировавшейся воды. Если же транспортировка газа с помощью шланга осуществляется по воздуху, то для отвода конденсата необходимо специальное устройство. Самая простая схема такого приспособления представляет собой U-образную трубку, присоединенную к шлангу в самой нижней его точке. Длина свободной ветви трубки должна быть больше, чем выраженное в миллиметрах водяного столба давление биогаза. По мере того, как в трубку стекает конденсат из трубопровода, вода выливается через ее свободный конец без утечки газа.

Информация о работе Производство биогаза