Теломера и старение

Автор работы: Пользователь скрыл имя, 30 Мая 2013 в 17:14, реферат

Описание

Хромосомы содержат наш геном, носителем которого являются молекулы ДНК. Еще в 1930-е годы американский генетик Герман Джозеф Меллер (Лауреат Нобелевской премии в области физиологии или медицины 1946 г.; получил премию «За открытие появления мутаций под влиянием рентгеновского облучения»), а затем и Барбара МакКлинток (Лауреат Нобелевской премии в области физиологии или медицины 1983 г.; получила премию «За открытие транспозирующих генетических систем») заметили, что структуры на концах хромосом, так называемые теломеры, препятствовали тому, чтобы хромосомы сцеплялись между собой. Они предположили, что теломеры могут выполнять защитную роль, но то, как они работают, оставалось загадкой.

Работа состоит из  1 файл

Не решенная проблема биологии.#57784.doc

— 170.00 Кб (Скачать документ)

1

Не решенная проблема биологии

Тема - Теломера и старение

 

1.Таинственная теломера

 

          Хромосомы содержат наш геном, носителем которого являются молекулы ДНК. Еще в 1930-е годы американский генетик Герман Джозеф Меллер (Лауреат Нобелевской премии в области физиологии или медицины 1946 г.; получил премию «За открытие появления мутаций под влиянием рентгеновского облучения»), а  затем и  Барбара МакКлинток (Лауреат Нобелевской премии в области физиологии или медицины 1983 г.; получила премию «За открытие транспозирующих генетических систем») заметили, что структуры на концах хромосом, так называемые теломеры, препятствовали тому, чтобы хромосомы сцеплялись между собой. Они предположили, что теломеры могут выполнять защитную роль, но то, как они работают, оставалось загадкой.

          После того как ученые в середине ХХ в. научились понимать, как идет копирование генов, возникла другая проблема: во время деления клетки происходит «расшивание» спирали ДНК на две цепочки и ее копирование ферментом ДНК-полимеразой. Однако конец одной из двух цепочек ДНК не может быть скопирован ДНК-полимеразой, поскольку этому мешает наличие на его конце АР-сайта(АР-сайт (от апурин-апиримидиновый сайт), к его возникновению приводит расщепление N-гликозидной связи дезоксинуклеотидов в составе ДНК. Из-за невозможности образовывать канонические пары оснований AP-сайты эффективно блокируют действие ДНК-полимераз. Многие ДНК-полимеразы при достижении AP-сайтов ДНК-матрицы останавливаются, после чего диссоциируют.). Логично предположить, что вследствие этого длина хромосомы должна уменьшаться каждый раз, когда клетка делится. Однако на деле этого не происходит. Почему?

2

          На этот вопрос был дан ответ, когда Нобелевские лауреаты этого года установили, каким образом функционирует теломера, и обнаружили фермент теломеразу, который копирует ее.

 

2. Теломера защищает хромосомы

 

          В начале своей исследовательской карьеры Э. Блэкберн занималась тем, что картировала последовательности ДНК, изучая хромосомы пресноводной реснитчатой инфузории рода Tetrahymena, некоторые виды которой часто используются как модельные организмы в биологических и медицинских исследованиях. Ученая обнаружила в хромосоме этой инфузории повторяющиеся последовательности ДНК, которые можно записать в виде CCCCAA. Функция этой последовательности была неясна. В то же самое время другой ученый, Дж. Шостак, сделал наблюдение, согласно которому линейная молекула ДНК, наподобие мини-хромосомы, введенная в клетку дрожжей, быстро деградировала. (рис. 1)

 

рис.1

 

 

3

          Оба ученых встретились на одной из конференций в 1980 х, где Э. Блэкберн представляла результаты своей работы. Они заинтересовали Дж. Шостака, и оба исследователя приняли решение выполнить общий эксперимент, в котором бы преодолевались барьеры между такими двумя очень далекими видами организмов, как инфузории и дрожжи. Итак, от ДНК инфузории тетрахимены Э. Блэкберн изолировала вышеупомянутую уже последовательность CCCCAA, а  Дж.  Шостак присоединил эту последовательность к мини-хромосоме, которую поместил в клетку дрожжей (см. рис. 1). Результаты, опубликованные в 1982 г., оказались поразительными, последовательность CCCCAA ДНК теломеры защищала мини-хромосомы от деградации. Поскольку ДНК теломеры от одного организма (инфузории тетрахимены) защищали хромосомы совершенно иного организма (дрожжей), этот опыт продемонстрировал существование ранее неизвестного фундаментального механизма. Позже стало очевидно, что ДНК теломеры с характерной для нее последовательностью имеется у большинства растений и животных, от амебы до человека.

 

3. Фермент, строящий теломеры

 

          После обнаружения теломер возник вопрос об их природе. Необходимо было установить механизм, при котором они бы строились на концах хромосомы. К. Грейдер, работавшая под руководством уже упомянутой Э. Блэкберн, проводила исследование с целью выяснить, не участвует ли в формировании ДНК теломер какой-то неизвестный до этого времени фермент. В Рождественский день 1984 г. К. Грейдер обнаружила признаки ферментативной активности в клеточном экстракте. Обнаруженный энзим Э. Блэкберн и К. Грейдер назвали теломеразой. После его выделения и очистки ученые установили, что он состоит не только из протеина, но и РНК, которая содержит ту же последовательность CCCCAA, что и теломера. Таким образом,

4

РНК служит шаблоном для построения теломеры, в то время как белковый компонент фермента необходим непосредственно для ферментативной деятельности. Теломераза удлиняет ДНК теломеры, обеспечивая платформу, которая в свою очередь позволяет ДНК-полимеразам скопировать хромосому по всей длине, без потери генетической информации. Таким образом, хромосома при копировании не укорачивается.

 

4. Теломера против старения клетки

 

          Теперь ученые начали исследовать, какую роль теломера играет в клетке. Дж. Шостак с сотрудниками обнаружил, что в клетках дрожжей, имеющих мутации, теломера постепенно укорачивается; такие клетки очень плохо растут, а потом и вовсе прекращают делиться. Э. Блэкберн с сотрудниками подобную картину наблюдали в инфузории тетрахимене, если РНК теломеразы была подвергнута мутации. В обоих случаях это приводило к преждевременному клеточному старению. Напротив, нормально функционирующие теломеры предотвращали укорочение хромосом и задерживали клеточное старение. Позже К. Грейдер с сотрудниками установила, что подобный механизм работает и в клетках человека, где укорочению хромосом мешала теломераза. Благодаря проведению интенсивных исследований в этой области теперь нам известно, что последовательность ДНК в теломере «притягивает» белки, которые формируют защитный «колпачок» вокруг хрупких кончиков ДНК.

 

 

Список литературы

 

 

1. Меллер Г.Д.; Естественное  старение клеток; 1952г. 84 стр.

2. Ефремова А.Н.; Научные труды Дж. Шостака; 2009г. 126 стр.

3. Новиков Д.М.; Теломера – миф или реальность; 2010г. 47 стр.


Информация о работе Теломера и старение