Шпаргалка по "Микробиологии"

Автор работы: Пользователь скрыл имя, 24 Мая 2013 в 01:17, шпаргалка

Описание

Работа содержит ответы на вопросы для экзамена по "Микробиологии".

Работа состоит из  1 файл

ответы микра..docx

— 379.35 Кб (Скачать документ)

Часть I. Общая микробиология.

  1. Морфология, ультраструктура бактериальной клетки.

Морфологические свойства бактерий. Бактерии — микроорганизмы, не имеющие оформленного ядра (прокариоты).

Бактерии  имеют разнообразную форму и  довольно сложную структуру, определяющую многообразие их функциональной деятельности. Для бактерий характерны четыре основные формы: сферическая (шаровидная), цилиндрическая (палочковидная), извитая и нитевидная.

Бактерии шаровидной формы — кокки — в зависимости от плоскости деления и расположения относительно друг друга отдельных особей подразделяются на микрококки (отдельно лежащие кокки), диплококки (парные кокки), стрептококки (цепочки кокков), стафилококки (имеющие вид виноградных гроздьев), тетракокки (образования из четырех кокков) и сарцины (пакеты из 8 или 16 кокков).

Палочковидные бактерии располагаются в виде одиночных клеток, дипло- или стрептобактерий.

Извитые формы бактерий — вибрионы и спириллы, а также спирохеты. Вибрионы имеют вид слегка изогнутых палочек, спириллы — извитую форму с несколькими спиральными завитками.

Размеры бактерий колеблются от 0,1 до 10 мкм. В состав бактериальной клетки входят капсула, клеточная стенка, цитоплаз-матическая мембрана и цитоплазма, в которой содержатся нук-леоид, рибосомы и включения. Некоторые бактерии снабжены жгутиками и ворсинками. Ряд бактерий образуют споры, которые располагаются терминально, субтерминально или центрально; превышая поперечный размер клетки, споры придают ей веретенообразную форму.

 

  1. Методы микроскопического исследования микроорганизмов.

Люминесцентная (или флюоресцентная) микроскопия. Основана на явлении фотолюминесценции.

Люминесценция — свечение веществ, возникающее после воздействия на них каких-либо источников энергии: световых, электронных лучей, ионизирующего излучения. Фотолюминесценция — люминесценция объекта под влиянием света. Если освещать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В результате возникает цветное изображение объекта.

Темнопольная микроскопия. Микроскопия в темном поле зрения основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоидконденсора, которые заменяют обычный конденсор в биологическом микроскопе .

Фазово-контрастная   микроскопия.   Фазово-контрастное  приспособление дает возможность увидеть в микроскоп прозрачные объекты. Они приобретают высокую контрастность изображения, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным — светлое изображение объекта на темном фоне.

Для фазово-контрастной  микроскопии используют обычный  микроскоп и дополнительное фазово-контрастное  устройство, а также специальные  осветители.

Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмикроскопических объектов.

  1. Особенности строения и химического состава клеточной стенки Гр(+) и Гр(-) бактерий.

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Клеточная стенка. В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом толстой клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90 % массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).

В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид.

Функции клеточной  стенки: 
1. Обусловливает форму клетки. 
2. Защищает клетку от механических повреждений извне и выдерживает значительное внутреннее давление. 
3. Обладает свойством полупроницаемости, поэтому через нее избирательно проникают из среды питательные вещества. 
4. Несет на своей поверхности рецепторы для бактериофагов и различных химических веществ.

Метод выявления клеточной стенки - электронная микроскопия, плазмолиз.

 

  1. Протопласты, сферопласты, L-формы.

L-формы бактерий, их  медицинское значение 
L-формы - это бактерии, полностью или частично лишенные клеточной стенки (протопласт +/- остаток клеточной стенки), поэтому имеют своеобразную морфологию в виде крупных и мелких сферических клеток. Способны к размножению.

Цитоплазматическая мембрана располагается под клеточной стенкой (между ними - периплазматическое пространство). По строению является сложным липидобелковым комплексом, таким же, как у клеток эукариот (универсальная мембрана).

Функции цитоплазматической мембраны: 
1. Является основным осмотическим и онкотическим барьером. 
2. Участвует в энергетическом метаболизме и в активном транспорте питательных веществ в клетку, так как является местом локализации пермеаз и ферментов окислительного фосфорилирования. 
3. Участвует в процессах дыхания и деления. 
4. Участвует в синтезе компонентов клеточной клетки (пептидогликана). 
5. Участвует в выделении из клетки токсинов и ферментов.

Цитоплазматическая мембрана выявляется только при электронной микроскопии.

  1. Метаболизм микроорганизмов. Ферменты. Практическое использование биохимической активности микроорганизмов.

Типы питания. Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы, использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы, питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.

Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или животных, относят к патогенным и условно-патогенным. Среди патогенных микроорганизмов встречаются облигатные и факультативные паразиты (от греч. parasitos — нахлебник). Облигатные паразиты способны существовать только внутри клетки, например риккетсии, вирусы и некоторые простейшие.

В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров водорода неорганические соединения, называют литотрофны-ми (от греч. lithos — камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения, — органотрофами.

Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемотрофы, нуждающиеся в химических источниках энергии.

Механизмы питания. Поступление различных веществ в бактериальную клетку зависит от величины и растворимости их молекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая макромолекулы массой более 600 Д. Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения питательных веществ в бактериальную клетку: это простая диффузия, облегченная диффузия, активный транспорт, транслокация групп.

Наиболее  простой механизм поступления веществ в клетку — простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молекулы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, локализующихся в цитоплазматической мембране и обладающих специфичностью. Каждый переносчик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембраны — собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых — цитоплазматическая мембрана. Облегченная диффузия протекает без затраты энергии, вещества перемещаются от более высокой концентрации к более низкой.

Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сторону большей, т.е. как бы против течения, поэтому данный про цесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных реакций в клетке.

Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видоизменяется в процессе переноса, например фосфорилируется.

Выход веществ из клетки осуществляется за счет диффузии и при участии  транспортных систем.

Ферменты  бактерий. Идентификация бактерий по ферментативной активности.

 

В основе всех метаболических реакций  в бактериальной клетке лежит  деятельность ферментов, которые принадлежат  к 6 классам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Ферменты, образуемые бактериальной клеткой, могут локализоваться как внутри клетки — эндоферменты, так и выделяться в окружающую среду — экзоферменты. Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь источниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепляют крупные молекулы пептидов, полисахаридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализованы в периплазматическом пространстве бактериальной клетки. Они участвуют в процессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых случаях — для видов. Поэтому определением спектра ферментативной активности пользуются при установлении таксономического положения бактерий. Наличие экзоферментов можно определить при помощи дифференциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.

Идентификация бактерий по ферментативной активности.

Наиболее часто определяют ферменты класса гидролаз и оксидоредуктаз, используя специальные методы и среды.

Для определения протеолитической активности микроорганизмы засевают в столбик желатина уколом. Через 3—5 дней посевы просматривают и отмечают характер разжижения желатина. При разложении белка некоторыми бактериями могут выделяться специфические продукты — индол, сероводород, аммиак. Для их определения служат специальные индикаторные бумажки, которые помещают между горлышком и ватной пробкой в пробирку с МПБ или (и) пептонной водой, засеянными изучаемыми микроорганизмами. Индол (продукт разложения триптофана) окрашивает в розовый цвет полоску бумаги, пропитанной насыщенным раствором щавелевой кислоты. Бумага, пропитанная раствором ацетата свинца, в присутствии сероводорода чернеет. Для определения аммиака используют красную лакмусовую бумажку.

Для многих микроорганизмов  таксономическим признаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продуктов. Для выявления этого используют среды Гисса, содержащие различные углеводы (глюкозу, сахарозу, мальтозу, лактозу и др.). Для обнаружения кислот в среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2—6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом».

Для обнаружения газообразования в жидкие среды опускают поплавки или используют полужидкие среды с 0,5% агара.

Для того чтобы определить интенсивное кислотообразование, характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный —при более низких значениях рН.

Гидролиз мочевины определяют по выделению аммиака (лакмусовая бумажка) и подщелачиванию среды.

При идентификации  многих микроорганизмов используют реакцию Фогеса — Проскауэра на ацетоин — промежуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свидетельствует о наличии бутандиолового брожения.

Обнаружить каталазу можно по пузырькам кислорода, которые начинают выделяться сразу же после смешивания микробных клеток с 1 % раствором перекиси водорода.

Для определения цитохромоксидазы применяют реактивы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный раствор N-диметил-р-фенилендиамина дигидро-хлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появляющемуся через 2—5 мин.

Информация о работе Шпаргалка по "Микробиологии"