Сильные и слабые электролиты

Автор работы: Пользователь скрыл имя, 25 Марта 2012 в 18:05, реферат

Описание

Электрохимия - раздел физической химии, который изучает системы, содержащие ионы (растворы, расплавы и твердые электролиты), а также процессы и явления с участием заряженных частиц (ионов и электронов), имеющие место на границе раздела двух фаз. Обычно одной из фаз является металл или полупроводник, другая фаза - раствор или расплав электролита либо твердый электролит. Для таких двухфазных систем термин "электрохимия" имеет более узкий смысл как наука, изучающая взаимодействие зарядов металла или полупроводника с ионами и молекулами раствора

Работа состоит из  1 файл

электрохимия .doc

— 195.50 Кб (Скачать документ)

В органической химии реакции гидролиза сопровождаются либо разрушением органической молекулы (гидролиз сложных эфиров, белков): CH3COOC2H5 + H2O ® CH3COOH + C2H2OH, либо заменой в молекуле какой-либо группы на остаток молекулы воды, обычно гидроксил (гидролиз алкилгалогенидов): C2H5Br + H2O ® C2H5OH + HBr. В обоих случаях гидролизу способствует присутствие щелочи, которая связывает выделяющуюся кислоту. В случае белков и других биологически активных молекул реакцию гидролиза направляют в нужном направлении специальные ферменты – гидролазы. Например, фермент амилаза способствует гидролизу крахмала; фермент трипсин направленно гидролизует в белках пептидные связи, образованные аминокислотами аргинином и лизином.

     Примерами реакции гидратации в органической химии может служить каталитическая гидратация алкенов с образованием спиртов:

 

С2Н4 + Н2О ® С2Н5ОН

     Реакции гидратации широко используются в промышленном органическом синтезе. Например, каталитической гидратацией из этилена получают этиловый спирт, из пропилена – пропиловый спирт, из ацетилена – уксусный альдегид, из метилацетилена – ацетон. Реакция гидратации с образованием гидратов является ключевой при формовании изделий из гипса, при «схватывании» цемента. Образование газовых гидратов используют для разделения многокомпонентных газовых смесей. Наличие запасов гидратов метана в недрах Земли перспективно для будущей добычи природного газа. Реакции гидролиза широко используются в лабораторной практике и в промышленности. Гидролизом целлюлозы получают называемый гидролизный этиловый спирт, гидролизом сахарозы – глюкозу и фруктозу, гидролизом жиров – глицерин и соли карбоновых кислот – мыла. Ферментативный гидролиз органических соединений широко применяется в пищевой, текстильной и фармацевтической промышленности.

 

6 Значение растворов сильных электролитов в химии и химической технологии

 

 

     Электролиты играют важную роль в науке и технике. Они участвуют в электрохимических и многих биологических процессах, являются средой для органического и неорганического синтеза и электрохимического производства.

Устройства с твердыми оксидными электролитами. Главное предназначение твердых оксидных электролитов виделось в создании топливных элементов - химических источников тока, в которых энергия газа непосредственно превращается в электрическую. Топливные элементы - близкие родственники гальванических элементов. Но те служат, пока в их электролите и электродах есть активные вещества, а топливные элементы могут работать сколь угодно долго, пока к ним подводится горючее. Систематические исследования твердых оксидных электролитов начались в Германии в начале 50-х годов, а с конца 50-х развернулись в СССР, США и Канаде. В нашей стране эти работы с самого начала вел Институт химии Уральского филиала АН СССР (Свердловск, ныне Екатеринбург), и школа высокотемпературной электрохимии твердых электролитов, созданная на Урале, стала уникальной по широте охвата проблемы и глубине ее изучения.

     Конструкций, в основе которых лежат твердые оксидные электролиты, запатентовано очень много, но принцип их действия одинаков и довольно прост. Это пробирка с парой электродов на стенке, снаружи и внутри. Она помещена в нагреватель; внутрь пробирки и в пространство, ее окружающее, можно подводить газ. Посмотрим, какие функции могут выполнять такие устройства.

     Потенциометрические датчики состава газа. Наверное, они наиболее просты. Электроды в разных газах приобретают разные потенциалы. Если, скажем, внутри пробирки находится чистый кислород, а снаружи - газ с неизвестной его концентрацией, то по разности потенциалов электродов можно эту концентрацию определить.

     Потенциометрические датчики позволяют определять состав и более сложных газовых смесей, содержащих углекислый и угарный газы, водород и водяной пар. Если стерженек из твердого электролита с электродами на торцах нагрет неравномерно, он начнет терять кислород и между электродами возникнет разность потенциалов. По ее величине можно определить, например, состав выхлопных газов автомобильного двигателя. На Западе, где требования к чистоте выхлопных газов очень строги, такие датчики выпускаются миллионами. У нас же на такие "пустяки" пока не обращают внимания.

Кислородные датчики пока единственные устройства с твердыми оксидными электролитами, нашедшие практическое применение.

     Кислородные насосы. Пусть во внешнее пространство пробирки подается воздух или газ, содержащий кислород. Если внешний электрод стал анодом, а внутренний - катодом, то из газа в пробирку пойдет чистый кислород. Подобные устройства - кислородные насосы - могут найти применение там, где потребление кислорода невелико или требуется его высокая чистота.

     В медицине, например, используется и чистый кислород, и воздух с пониженным содержанием кислорода - так называемая "гипоксическая смесь", или "горный воздух". Электрохимические насосы наряду с мембранными оксигенаторами позволят решить массу проблем, особенно в медицинских учреждениях, удаленных от промышленных центров. В атмосфере с пониженным содержанием кислорода значительно дольше хранятся продукты питания, и устройства с кислородными насосами могут стать экономичней привычных холодильников.

     Электролизеры. Теперь к внешнему электроду - катоду - подводят водяной пар или углекислый газ. На катоде будет происходить разложение пара или углекислого газа, а на аноде в обоих случаях выделяется кислород. Уникальная способность этого высокотемпературного электролизера одновременно разлагать водяной пар и углекислый газ позволяет создать систему жизнеобеспечения, скажем, на космических объектах.

     Теплоэлектрогенераторы. Человек сделал первый шаг к независимости от природы, научившись сохранять огонь, поистине универсальный источник энергии. Костер давал тепло и свет, на нем готовили пищу, он расходовал ровно столько топлива, сколько было необходимо. Костер тысячелетиями оставался главной энергетической установкой человека, и неудивительно, что мы испытываем какую-то ностальгию по очагу с горящими дровами.

Еще в конце прошлого века свет давали свечи и керосиновые лампы, а тепло - печи. Лишь немногим более ста лет назад на человека начало работать электричество, которое могло давать свет, тепло, механическую работу. Одно время казалось, что достаточно подвести к жилищу только электрическую энергию, а уж там преобразовывать ее во что угодно. Но сказала свое слово экономика: кпд электростанции менее 40%, потери при передаче и обратном превращении электричества в другие виды энергии тоже значительны. Ясно, что там, где нужно только тепло, его целесообразно получать прямо из топлива. И не случайно сегодня обсуждается простая идея: вернуть "очаг" в дом в виде электрохимического генератора с топливным элементом, преобразующим энергию топлива в электричество и тепло.

     Топливные элементы. Пусть к внешним стенкам пробирки подается водород, а внутрь ее - кислород. Между электродами возникнет напряжение около вольта, по соединяющей их цепи потечет ток, и на электродах пойдут реакции, обратные тем, что проходят в электролизере. Внешний электрод станет анодом, внутренний - катодом, а устройство превратится в источник тока - твердооксидный топливный элемент.

     Одно и то же устройство может служить и топливным элементом, и электролизером, позволяя аккумулировать электрическую энергию. В период низкого ее потребления невостребованная мощность электростанций используется для получения водорода. В пике потребления электролизер начинает работать как топливный элемент, производя электричество из водорода.

     Превратить уголь, нефть, различные газы и спирты (которые, например, в Бразилии используют как горючее для автомобилей). Элемент послужит основой электрохимического генератора, способного существенно изменить концепцию снабжения жилища энергией. Наиболее прост в техническом отношении генератор на природном газе - метане или пропане.

     Как показывают исследования, его электрический кпд достигает 70%. Остальные 30% энергии топлива выделяются в виде тепла, которое можно использовать в паровых турбинах. Кпд такой комбинированной установки способно превысить 80% - столь высокой эффективности нет ни у одного генератора.

     Восемь лет назад в Институте высокотемпературной электрохимии Уральского отделения РАН был изготовлен демонстрационный генератор на метане мощностью один киловатт. Но до практической реализации дело никак не дойдет. Опытно-конструкторские работы, которые уже начинались, до конца так и не доведены. Задача очень сложна, ее необходимо решать в рамках национальной программы, попытки разработать которую оказались пока безуспешными.

     Электролит щелочной натриево-литиевый широко применяется в автомобильной и горно-добывающей промышленностях. Главное назначение этого электролита - заполнение различных щелочных аккумуляторов. Его используют для наполнения аккумуляторов электрических погрузчиков и специальных шахтных электровозов.

     Электролит кислотный применяется для заливки в свинцовые аккумуляторы легкового и грузового автотранспорта.

     При кадмировании деталей сложной геометрической формы применяют аммиакатные электролиты, рассеивающая способность которых выше, чем кислых. Чаще всего применяется электролит следующего состава, г/л.

     Покрытие проводят при катодной плотности тока 0,5 - 1,0 А/дм2, рН=6,9 и температуре ванны 20-25°С. Этот электролит обладает хорошей буферной емкостью и не требует частых корректировок.

     С введением декстрина улучшается структура поверхности и повышается катодная поляризация. Введение флюоресцина способствует получению мелкокристаллической структуры.

     Цианистые электролиты позволяют получать покрытия очень высокого качества, однако в силу высокой токсичности компонентов и необходимости применять дорогие и сложные очистные сооружения для очистки сбрасываемых сточных вод эти электролиты на светотехнических заводах не применяют.

     Другие электролиты, такие, как фенолсульфатные и этилендиаминовые, не получили широкого применения, так как работа с ними малопроизводительна.

Пассивирование кадмиевых покрытий производят значительно реже, чем цинковые.

     При пассивировании детали погружают на 5-10 с в раствор, после чего их вынимают и тщательно промывают в проточной воде, сушат детали в потоке теплого воздуха.

Заключение

 

     В ходе проделанной работы было выяснено, что электролиты можно разделить на две группы - сильные и слабые. Сильные электролиты в водных растворах диссоциированы практически полностью. Понятие степени диссоциации к ним не применимо. Слабые электролиты в водных растворах диссоциируют только частично, и в растворе устанавливается динамическое равновесие между недиссоциированными  молекулами и ионами. Рассмотрен закон Рауля для растворов электролитов, коэффициент диссоциации (i) и его связь со степенью диссоциации, элементы современной теории сильных электролитов (теория Дебая-Хюккеля), ионная сила, активность и коэффициент активности, произведение растворимости, гидратация ионов. Было выяснено, что электролиты чрезвычайно важны в науке и технике. Все жидкие системы в живых организмах содержат электролит. Электролиты являются средой для проведения многих химических синтезов и процессов электрохимических производств. При этом всё большую роль играют неводные растворы электролитов. Изучение свойств растворов электролитов важно для создания новых химических источников тока и совершенствования технологических процессов разделения веществ - экстракции из растворов и ионного обмена.

 

 

 

 

 

 

 

 

 

 

 

Содержание                                                                                                         стр

 

Введение                                                                                                                4

1. Теория растворов электролитов. Сильные и слабые электролиты              6

2. Отличие сильных электролитов от слабых                                                    9

3. Закон Рауля для растворов электролитов. Коэффициент

    диссоциации (i) и его связь со степенью диссоциации.

    Элементы современной теории сильных электролитов

   (теория Дебая-Хюккеля). Ионная сила, активность и коэффициент

   активности                                                                                                         11

4. Произведение растворимости                                                                         14

5. Гидратация ионов. Кристаллогидраты                                                          16 

6. Значение растворов сильных электролитов в химии и химической

   технологии                                                                                                        21                                                                                        

Заключение                                                                                                           26                                                                                                      

Список используемых источников                                                                     27   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список используемых источников

 

1. Глинка Н.Л. Общая химия: - Л.: Химия 1985  Под ред. В.А. Рабиновича.

2. Фролов В.В. Химия: - М.: Высш. Шк., 1986.- 543с.

Информация о работе Сильные и слабые электролиты