Рентгеноструктурный анализ

Автор работы: Пользователь скрыл имя, 02 Апреля 2012 в 09:04, реферат

Описание

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Содержание

Введение………………………………………………………………..3
Теоретическая часть…………………………………………………...5
Методы рентгеновской съемки кристаллов…………………………19
Аппаратная реализация
ДРОН-3…………………………………………………………………25
ДРОН-2…………………………………………………………………31
Применение…………………………………………………………….33
Заключение……………………………………………………………..36
Список литературы……………………………………………………..37

Работа состоит из  1 файл

рентгеностр.doc

— 857.50 Кб (Скачать документ)


 

 

 

 

 

 

 

 

 

Курсовая работа на тему:

«Рентгеноструктурный анализ»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

 

Введение………………………………………………………………..3

Теоретическая часть…………………………………………………...5

Методы рентгеновской съемки кристаллов…………………………19

Аппаратная реализация

ДРОН-3…………………………………………………………………25

ДРОН-2…………………………………………………………………31

Применение…………………………………………………………….33

Заключение……………………………………………………………..36

Список литературы……………………………………………………..37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Введение

 

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

1) Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

2) Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Задачи, решаемые методом рентгеноструктурного анализа, можно разбить на две категории: 1) задачи, решаемые измерением расстояния между пятнами рентгенограммы; 2) задачи, требующие для своего решения оценки интенсивности рассеянных лучей. Задачи первой категории могут быть решены за несколько дней, вторые — могут потребовать нескольких месяцев. Измеряя расстояния между пятнами рентгенограммы, можно определить массу молекулы, ее симметрию, сделать вероятные предсказания в отношении формы молекулы и, таким образом, принять или опровергнуть возможные, по химическим сведениям, соображения о химическом строении.

 

 

 

 

 

 

 

 

 

 

 

Теоретическая часть

 

Очень плодотворным методом изучения геометрического строения молекулы (взаимного расположения центров атомов и углов между связями) является метод рентгеноструктурного анализа кристаллов органических веществ. Он основан на том, что всякое вещество обладает способностью рассеивать падающее на него излучение, в том числе рентгеновское. При этом рассеяние рентгеновских лучей кристаллами находится в определенном соответствии с расположением атомов в кристалле.

Одиночный кристалл представляет собой тело, в котором вещество распределено с периодически повторяющейся в трех измерениях плотностью. Как на обоях один и тот же рисунок многократно заполняет со строгой повторяемостью плоскую поверхность, так и в кристалле имеется группа молекул, повторением которой в пространстве строится кристалл. В кристалле всегда имеется возможность выделить некоторый минимальный объем в виде параллелепипеда (в общем случае косоугольного); пространство, занимаемое кристаллом, можно считать заполненным такими параллелепипедами, приложенными друг к другу. Такой параллелепипед носит название элементарной ячейки кристалла. В состав ячейки может входить одна или несколько молекул вещества.

Строгая упорядоченность расположения молекул в кристалле делает его удобным объектом для изучения строения молекул. Только в кристалле имеются миллиарды молекул, одинаково расположенных по отношению к падающему лучу и дающих одинаковые, усиливающие друг друга рассеянные лучи.

При падении на кристалл рентгеновских лучей в некоторых направлениях возникают очень интенсивные рассеянные лучи; в этих направлениях молекулы рассеивают лучи в одной фазе. В то же время имеется множество пространственных направлений, в которых рассеянные лучи не усиливают, а гасят друг друга (рассеянные волны приходятся не горб к горбу, а горб к впадине). Соответственно этому рентгенограмма кристалла, т. е.

фотоснимок картины рентгеновского рассеяния, состоит из отдельных пятен разной степени почернения. Определяя расстояния между пятнами и величины интенсивностей лучей, можно делать важные заключения о строении вещества.

Для рентгеноструктурного исследования нужен небольшой кристаллик (0,5—1 мм3) вещества. Кристаллик устанавливают на пути узкого, пропущенного через диафрагмы луча. За кристалликом помещают на расстоянии нескольких сантиметров фотопленку. В зависимости от цели исследования производят съемку либо неподвижного кристалла на неподвижную пленку, либо кристалла, вращающегося около своей оси, на неподвижную пленку, либо вращающегося кристалла на пленку, находящуюся в движении, согласованном с вращением кристалла.

Измерив интенсивность пятен, можно определить взаимное расположение атомов. Молекулярный вес, по рентгеновским данным, определяют следующим образом. Непосредственным результатом опыта является объем элементарной ячейки V. Если в ячейке имеется N молекул веса М ∙ 1,65 ∙ 10–24, то плотность вещества равна

 

Зная из пикнометрических или иных данных плотность ρ, можно из написанного равенства определить NM, т. е. число, кратное молекулярному весу. Однако значение N не может быть любым. В зависимости от принадлежности кристалла к тому или иному классу симметрии, для N имеется выбор лишь из двух-трех значений (скажем, 2, 4 или 8). Весьма часто знание симметрии приводит к одному единственному возможному значению N. Большей частью рентгеновские методы позволяют установить молекулярный вес однозначно.

Если число молекул в ячейке известно, то симметрия кристалла однозначно определяет симметрию молекулы. Часто, определив симметрию молекулы, можно сделать выбор между двумя изомерами.

Зная симметрию молекулы, число молекул в ячейке и форму ячейки, можно из ряда возможных моделей строения молекулы выбрать единственно правильную. Это делается на основании важнейшего правила органической кристаллохимии — правила плотной упаковки молекул в кристалле. Модель молекулы должна быть такой, чтобы в ячейке укладывалось нужное число молекул и притом укладывалось плотно, т. е. чтобы «выступ» одной молекулы заходил во «впадину» другой.

Таблица 1.

 

Если перечисленные сведения получены, то данные, которые может дать измерение расстояний между пятнами рентгенограммы, исчерпаны. Остается измерить интенсивности рассеянных лучей и произвести довольно громоздкие вычисления, при помощи которых с точностью до 0,01 Å (1Å=10–8 см) могут быть определены все межатомные расстояния (как внутри молекулы, так и между атомами разных молекул), а также с точностью до 0,5° — величины валентных углов.

Рентгеноструктурные исследования показали, что расстояния между валентно связанными атомами значительно меньше расстояний между атомами, принадлежащими разным молекулам. Половина расстояния, соединяющего центры двух одинаковых атомов валентной связью, называется атомным радиусом. Половина отрезка между центрами двух одинаковых ближайших атомов двух соседних молекул называется межмолекулярным, или вандерваальсовым, радиусом. В табл. 1 приведены эти величины.

На основании этих данных можно строить модели молекул при помощи срезанных шаров. Число срезов на каждом шаре должно быть равно числу атомов, с которыми атом, изображаемый данным шаром, образует валентные связи. Направления срезов должны быть перпендикулярны направлениям валентностей. Диаметр шара равен межмолекулярному диаметру, а расстояние от центра шара до плоскости среза равно атомному радиусу.

Рентгеновские исследования послужили мощной опорой для стереохимии. Справедливость выводов о тетраэдричности связей четырехвалентного углерода была строго подтверждена на ряде соединений CR4, а также данными исследования алмаза. На многочисленных примерах было подтверждено плоское расположение атомов в ароматических системах.

Модель алмаза (рис. 1) показывает, что в кристалле алмаза каждый атом углерода лежит в центре правильного тетраэдра, а четыре ближайших атома углерода — в его углах. Иначе говоря, атомы углерода в алмазе находятся в положениях, отвечающих стереохимической модели Вант-Гоффа. Расстояние между ближайшими атомами углерода равно 1,54 Å.

Рис.1. Расположение атомов в кристалле алмаза.

 

В случае алмаза замечательно то, что каждый из названных четырех ближайших атомов углерода является таким же центральным атомом для четырех соседних и т. д. Таким образом, если считать, что атомы углерода связаны с соседними атомами своими четырьмя валентностями, то приходится признать, что все углеродные атомы, входящие в кристалл алмаза, связаны обычными, или главными, валентностями, а следовательно, весь кристалл алмаза, как бы велик он ни был, представляет собой одну громадную молекулу. Для того чтобы механически раздробить кусочек алмаза, необходимо преодолеть силы химических валентностей, чем и объясняется необыкновенная твердость алмаза.

Рис.2. Расположение атомов в кристалле графита.

 

В кристаллической решетке графита (рис. 2), так же как и в решетке алмаза, нельзя обнаружить отдельных молекул. Здесь атомы углерода расположены на плоскостях, в углах правильных шестиугольников, на которые разбита каждая плоскость, так что каждый такой атом является общим для трех смежных шестиугольников. Расстояние между ближайшими углеродными атомами равно 1,41 Å. Следующая плоскость, в которой атомы углерода расположены таким же образом, как и в первой, находится от первой на расстоянии 3,35 Å, т. е. на гораздо большем расстоянии (в 2,3 раза), чем атомы углерода, лежащие в одной плоскости. Таким образом, в графите каждый атом углерода связан прочно лишь с тремя ближайшими атомами, и притом даже более прочно, чем в алмазе, а связь с четвертым атомом, находящимся в другой плоскости, является несравненно более слабой; это находится в соответствии с весьма совершенной спайностью, наблюдаемой для графита в направлении, перпендикулярном таким слабым связям.

Если в алмазе молекулой можно считать целый кристалл, то в графите молекулой является каждая плоскость, составленная из углеродных шестиугольников.

Особенностью рентгеноструктурного анализа как метода установления строения вещества является то, что он помогает выяснить не только очередность связи атомов друг с другом, но и их пространственное расположение, а также некоторые тонкости строения, трудно устанавливаемые иными путями. Так, рентгеноструктурный анализ является одним из главных способов определения наиболее выгодной конформации молекулы. Конечно, при вхождении в кристалл молекула может изменить свою конформацию, но поскольку энергия связи молекул в решетке незначительна, ее влияния на конформацию могут быть учтены.

Большинство сведений о координационном окружении атомов (например, наличие трехгранной бипирамиды у пятивалентного фосфора) получено при помощи рентгеноструктурного анализа. Строение «сэндвичевых» молекул типа ферроцена также могло быть непосредственно доказано только этим методом.

Для определения взаимного влияния атомов, передающегося по цепи конъюгации, рентгеноструктурный анализ имеет меньшее значение, чем спектральные методы и в особенности метод ядерного магнитного резонанса. Тем не менее известен ряд интересных закономерностей, коррелирующих эффекты сопряжения и длины связей. Так, например, длины связей С—Сl в хлорпроизводных парафинов равны в среднем 1,76—1,77 Å, в хлорпроизводных олефинов — 1,72 Åив соединениях ароматического ряда — 1,70 Å. Длина углерод-углеродной σ-связи, составляющая

в этане 1,54 Å, уменьшается в полиацетиленах и их производных

Информация о работе Рентгеноструктурный анализ