Открытие химических элементов и происхождение их названий

Автор работы: Пользователь скрыл имя, 04 Марта 2013 в 23:24, контрольная работа

Описание

Очень важным для понимания структуры и эволюции Вселенной является вопрос о химическом составе вещества во Вселенной. Актуальность данной темы заключается в том, что периодическая система Д.И. Менделеева оказала большое влияние на последующее развитие химии.
Как известно, всякое вещество состоит из атомов. В естественном виде на Земле встречается около 90 разных видов атомов; кроме того, несколько новых видов атомов было получено искусственно. Вещество, образованное атомами только одного какого-нибудь вида, называется элементом.

Содержание

Введение…………………………………………………………………………………..3
1. Периодическая система и периодический закон Д. И. Менделеева………………..4
2. История открытия химических элементов…………………………………………...6
Заключение……………………………………………………………………..................23
Библиографический список……………………………………………………………...24

Работа состоит из  1 файл

контрольная работа КСЕ.doc

— 220.50 Кб (Скачать документ)

Платина (лат. Platinum), Pt, химический элемент VIII группы периодической системы, атомный номер 78, атомная масса 195,08, относится к платиновым металлам. Платина (англ. Platinum, франц. Platine, нем. Platin), вероятно, была известна еще в древности. Первое описание платины как металла весьма огнестойкого, который можно расплавить лишь с помощью "испанского искусства", сделал итальянский врач Скалингер в 1557 г. По-видимому, тогда же металл получил и свое название "платина". Оно отображает пренебрежительное отношение к металлу, как мало к чему пригодному и не поддающемуся обработке. Слово "платина" произошло от испанского названия серебра - плата (Plata) и представляет собой уменьшительную форму этого слова, которое по-русски звучит, как серебрецо, серебришко (по Менделееву - серебрец). Интересно отметить, что слово платина созвучно русскому "плата" (платить, оплата и пр.) и близко ему по смыслу. В XVII в. платина называлась Platina del Pinto, так как она добывалась в золотистом песке реки Пинто в Южной Америке; существовало и другое название подобного рода - Platina del Tinto от реки Rio del Tinto в Андалузии. Более подробно платину описал в 1748 г. де Уоллоа - испанский математик, мореплаватель и торговец. Начиная со второй половины XVIII в. платиной, ее свойствами, методами переработки и использования стали интересоваться многие химики-аналитики и технологи, в том числе и ученые Петербургской академии наук. Наиболее важные работы в этой области в первой половине XIX в. - это создание методов получения ковкой платины (Соболевский, Волластон и др.), открытие ее некоторых соединений (Мусин-Пушкин и др.) и металлов платиновой группы.

 

Золото (лат. Aurum ), Аu, химический элемент I группы периодической системы, атомный номер 79, атомная масса 196,9665. Золото (англ. Gold, франц. Оr, нем. Gold) - один из семи металлов древности. Обычно считают, что золото было первым металлом, с которым познакомился человек еще в эпоху каменного века благодаря его распространению в самородном состоянии. Особые свойства золота - тяжесть, блеск, неокисляемость, ковкость, тягучесть - объясняют, почему его стали использовать с самых древнейших времен главным образом для изготовления украшений и отчасти - оружия. Золотые предметы различного назначения найдены археологами в культурных слоях, относящихся к IV и даже V тысячелетию до н.э., т.е. к эпохе неолита. В III и II тысячелетиях до н. э. золото уже было широко распространено в Египте, Месопотамии, Индии, Китае, с глубокой древности оно было известно в качестве драгоценного металла народам американского и европейского континентов. Золото, из которого сделаны древнейшие украшения, нечисто, в нем содержатся значительные примеси серебра, меди и других металлов. Лишь в VI в. до н. э. в Египте появилось практически чистое золото (99,8%). В эпоху Среднего царства началась разработка нубийских месторождений золота (Нубия, или Эфиопия древности). Отсюда произошло и древне египетское название золота - нуб (Nub). В Месопотамии добыча золота в широком масштабе велась уже во II тысячелетии до н.э. Вавилонское название золота - хурэ - шу (hurasu) имеет отдаленное сходство с древнегреческим словом (хризос), которое встречается во всех древнейших лйтературных памятниках. Возможно, это слово происходит от названия местности, откуда могло поступать золото. Древнеиндийское ayas (золото) позднее употреблялось на других языках для обозначения меди, что, возможно, служит указанием на распространение в древности поддельного золота. С древнейших времен золото сопоставлялось с солнцем, называлось солнечным металлом или просто солнцем (Sol). В египетской эллинистической литературе и у алхимиков символ золота - кружок с точкой посредине, т.е. такой же, как и символ солнца. Иногда в греческой алхимической литературе встречается символ в виде кружка с изображением связанного с ним луча.

Золото как наиболее драгоценный металл служило издавна  меновым эквивалентом в торговле, в связи с чем возникли способы  изготовления золотоподобных сплавов на основе меди. Эти способы получили широкое развитие и распространение и послужили основой возникновения алхимии. Главной целью алхимиков было найти способы превращения (трансмутации) неблагородных металлов в золото и серебро. Европейские алхимики, идя по следам арабских, разработали теорию "совершенного" или даже "сверхсовершенного" золота, добавка которого к неблагородному металлу превращает последний в золото. В алхимической литературе встречается множество названий золота, обычно зашифрованных: зарас (zaras), трикор (tricor), соль (Sol), солнце (Sonir), секур (secur), сениор (senior) и т. д. Часть из них имеет арабское происхождение, например al-bahag (радость), hiti (кошачий помет), ras (голова, принцип), su'a (луч), diya (свет), alam (мир).

Ртуть (лат. Hydrargyrum), Hg, химический элемент II группы периодической системы, атомный номер 80, атомная масса 200,59. Ртуть (англ. Mercury, франц. Mercure, нем. Quecksilber) входит в число семи металлов древности. Она была известна по крайней мере за 1500 лет до н.э., уже тогда ее умели получать из киновари. Ртуть употребляли в Египте, Индии, Месопотамии и Китае; она считалась важнейшим исходным веществом в операциях священного тайного искусства по изготовлению препаратов, продлевающих жизнь и именуемых пилюлями бессмертия. В IV - Ш вв. до н.э. о ртути как о жидком серебре ( от греч. вода и серебро) упоминают Аристотель и Теофраст. Позднее Диоскорид описал получение ртути из киновари путем нагревания последней с углем. Ртуть считали основой металлов, близкой к золоту и поэтому называли меркурием (Mercurius), по имени ближайшей к солнцу (золоту) планеты Меркурий. С другой стороны, полагая, что ртуть представляет собой некое состояние серебра, древние люди именовали ее жидким серебром (откуда произошло лат. Hydrargirum). Подвижность ртути вызвала к жизни другое название - живое серебро (лат. Argentum vivum); немецкое слово Quecksilber происходит от нижнесаксонского Quick (живой) и Silber (серебро). Интересно, что болгарское обозначение ртути - живак - и азербайджанское - дживя - заимствованы, вероятно, от славян.

Таллий (лат. Тhallium), Tl, химический элемент III группы периодической системы, атомный номер 81, атомная масса 204,383. После того как с помощью спектроскопа были открыты рубидий и цезий, этот метод нашел широкое применение в химических исследованиях. Им пользовался и английский ученый Kрукс, открывший в 1863 г. таллий. За 10 лет до своего открытия Крукс проводил работу по извлечению селена из пыли, образующейся в камерах сернокислотного завода в Тильпероде (Германия). В отходах после операций по извлечению селена Крукс подозревал наличие теллура, но работа по каким-то причинам была отложена, и отходы долгое время сохранялись в лаборатории. Когда в 1861 г. в распоряжении Крукса оказался спектроскоп, он решил воспользоваться им, чтобы сразу же установить, содержится ли в отходах теллур. Внеся пробу в пламя горелки и ожидая увидеть линии теллура, Крукс с изумлением увидел ярко-зеленую линию, никогда им не наблюдавшуюся при спектроскопических исследованиях. Линия эта, однако, быстро исчезала (из-за летучести соединения), о появлялась вновь с каждой свежей пробой. Многократно повторив опыт и систематически обследовав спектры элементов, содержащихся в отходах (сурьмы, мышьяка, осмия, селена и теллура), Крукс убедился, что он имеет дело с неизвестным еще элементом. Так как Крукс не располагал большим запасом отходов, ему удалось выделить лишь очень малое количество элемента, которому он дал название таллий от греч. молодая зеленая ветвь. Почти одновременно с Круксом новый элемент открыл французский химик Лами. Характерно, что открытие было сделано тем же путем (спектроскопически) и на том же материале (камерный шламм сернокислотного производства в Лоосе). Лами получил 14 г металлического таллия и подробно описал его свойства, но его сообщение опоздало на несколько месяцев и приоритет открытия остался за Круксом.

Свинец (лат. Plumbum), Pb, химический элемент IV группы периодической системы Менделеева, атомный номер 82, атомная масса 207,2. Свинец (англ. Lead, франц. Plomb, нем. Blei) известен с III - II тысячелетия до н.э. в Месопотамии, Египте и других древних странах, где из него изготовляли большие кирпичи (чушки), статуи богов и царей, печати и различные предметы быта. Из свинца делали бронзу, а также таблички для письма острым твердым предметом. В более позднее время римляне стали изготовлять из свинца трубы для водопроводов. В древности свинец сопоставлялся с планетой Сатурн и часто именовался сатурном. В средние века благодаря своему тяжелому весу свинец играл особую роль в алхимических операциях, ему приписывали способность легко превращаться в золото. Вплоть до XVII в. свинец нередко путали с оловом. На древнеславянских языках он именовался оловом; это название сохранилось в современном чешском языке (Olovo).Древнегреческое название свинца , вероятно, связано с какой-либо местностью. Некоторые филологи сопоставляют греческое название с латинским Plumbum и утверждают, что последнее слово образовалось из mlumbum. Другие указывают, что оба эти названия произошли от санскритского bahu-mala (очень грязный); в XVII в. различали Plumbum album (белый свинец, т. е. олово) и Plumbum nigrum (черный свинец). В алхимической литературе свинец имел множество названий, часть которых принадлежала к тайным. Греческое название алхимики иногда переводили как plumbago - свинцовая руда. Немецкое Blei обычно производят не от лат. Plumbum, несмотря на явное созвучие, а от древнегерманского blio (bliw) и связанного с ним литовского bleivas (свет, ясный), но это мало достоверно. С названием Blei связано англ. Lead и датское Lood. Неясно происхождение русского слова свинец (литовск. scwinas). Автор этих строк в свое время предложил связывать это название со словом вино, так как у древних римлян (и на Кавказе) вино хранили в свинцовых сосудах, придававших ему своеобразный вкус; этот вкус ценили столь высоко, что не обращали внимания на возможность отравления ядовитыми веществами.

Висмут (лат. Bismuthum), Bi (читается «висмут», до середины 20 века произносили «бисмут»), химический элемент V группы периодической системы Менделеева; атомный номер 83, атомная масса 208,9804. Висмут известен с 15 века, но его долго принимали за разновидность олова, свинца или сурьмы. В 1529 немецкий ученый в области горного дела и металлургии Г. Агрикола дал первые сведения о металлическом висмуте, его добыче и переработке. Химическую индивидуальность висмута первым установил в 1739 И. Потт.

Радий (лат. Radium), Ra, химический элемент II группы периодической системы, атомный номер 88, атомная масса 226,0254, относится к щелочно-земельным металлам. Вскоре после открытия Беккерелем урановых лучей (1896) супруги Кюри начали исследования воздуха, ионизированного солями урана. Первым результатом их работы явилось установление того факта, что интенсивность уранового излучения пропорциональна количеству урана и не зависит ни от природы его соединения, ни от температуры, ни от освещенности. Иными словами, урановое излучение является свойством атомов урана. Вскоре нашли, что подобно урану воздух ионизируют и соединения тория. Супруги Кюри назвали излучающие свойства атомов некоторых элементов радиоактивностью. Несколько позже супруги. Кюри обнаружили, что некоторые образцы урановых минералов, например урановая смолка, имеют значительно большую радиоактивность, чем это можно было ожидать, судя по количеству содер жащегося в них урана. В апреле 1898 г. они сообщили Парижской академии наук о своем объяснении этой аномалии: в подобных минералах содержатся очень неболь шие количества особого элемента высокой радиоактивности. В связи с этим предположением была начата работа по химическому разделению урановой смолки. Повышенную радиоактивность обнаружили, как упоминалось раньше, фракции, содержащие соли висмута или соли бария, и, таким образом, речь шла не об одном, а о двух неизвестных элементах. После открытия полония супруги Кюри продолжали исследования бариевой фракции и 26 декабря 1898 г. сообщили, что различные основания заставляют их "уверенно говорить, что радиоактивное вещество содержит новый элемент, которому мы желаем дать название радий (Radium)". Слово радий происходит от лат. radius (луч). Чтобы выделить чистый препарат нового элемента, супругам Кюри пришлось провести oгромную работу по переработке около 1000 кг остатков урановой смолки, полученной из Вогемии. В 1902 г. они выделили 0,1 г чистого препарата радия и определили его атомный вес - 225; по химическим свойствам радий оказался аналогом бария. В 1910 г. Мария Кюри-Склодовская и Добьерн получили металлический радий.

Актиний (лат. Actinium), Ac, химический элемент III группы периодической системы, атомный номер 89, атомная масса 227,0278.  Актиний (англ. и франц.- Асtinium, нем.- Аktinium) был открыт в остатках смоляной обманки сотрудником супругов Кюри Добьерном в 1899 г. Название этому радиоактивному элементу присвоено по аналогии с названием радия (radius-луч); слово актиний (излучающий) происходит от греческого - излучение, свет. История дальнейшего изучения актиния такова: в 1901 г. Гизель, исследуя выделенную из смоляной обманки фракцию, содержащую редкоземельные элементы, обнаружил сильную радиоактивность раствора и выделил из него препарат неизвестного радиоактивного элемента, названного им эманием (Еmanium). Название это тоже подчеркивало радиоактивные свойства элемента (от лат. emanare - истекать, вытекать). В 1904 г. была установлена идентичность эмания с актинием, и для элемента оставили старое название.

 

 

 

 

 

Заключение

 

Таким образом, можно  придти к выводу, что периодическая система оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась мощным орудием для дальнейших исследований.

В работе над таблицей Д. И. Менделеев оставлял свободные места для неизвестных пока элементов. В течение следующих 15 лет его предсказания подтвердились: все три ожидаемых элемента были открыты.

Большое значение имела  система также для определения  валентности и атомных масс некоторых  элементов. На основе периодического закона были открыты трансурановые элементы, расположенные после урана.

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии, но и для философии, для всего нашего миропонимания.

Д.И. Менделеев показал, что химические элементы составляют стройную систему, в основе которой лежит фундаментальный закон природы. В этом нашло выражение положение материалистической диалектики о взаимосвязи и взаимообусловленности явлений природы.

Вскрывая зависимость между свойствами химических элементов и массой их атомов, периодический закон явился блестящим подтверждением одного из всеобщих законов развития природы – закона перехода.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Библиографический список

 

1) Н.Л. Глинка "Общая химия". Л., 1985 г.

 

2) Н.А. Фигуровский  "Открытие элементов и происхождение их названий". М., 1970г.

 

3) И.Г. Хомченко "Общая химия": учебник. – М., 1999 г.

 

4) Федорович И.В., Шеболкина Е.П. Эволюционное естествознание. Учебное пособие. Сыктывкар, 2000. Электронный вариант

 

 

 

 

 

 

 

1 Так называл их Д.И. Менделеев




Информация о работе Открытие химических элементов и происхождение их названий