Методы и преобразователи для измерения концентрации вещества

Автор работы: Пользователь скрыл имя, 24 Января 2012 в 16:12, реферат

Описание

Преобразователи приборы, задачей которых является определение состава и концентрации веществ, широко применяются для контроля технологических процессов, в химических, биологических, геологических, космических исследованиях, в сельском хозяйстве, медицине, криминалистике и в ряде других областей. Объектами рассматриваемых измерений практически являются все существующие вещества и химические элементы, которые могут находиться в различных агрегатных состояниях.

Содержание

Введение…………………………………………………………………………... 3
1 Электрохимические методы………………………………………. 5
2 Электрофизические методы……………………….………………. 8
3 ионизационные методы…………………………….………………. 13
4 спектрометрические (волновые) методы……………………. 17
5 комбинированные методы…………………………………………. 24
заключение……………………………………………….……………………... 29
список литературы……………………………

Работа состоит из  1 файл

Реферат.doc

— 2.73 Мб (Скачать документ)

     

     Рисунок 3- Электрическая схема термокондуктометрического газоанализатора типа ТП

     Для измерения концентрации компонентов  в дисперсных средах (суспензия, пульпа) применяется калориметрический метод, основанный на зависимости теплофизических параметров дисперсной среды от соотношения ее фаз. Обычно измеряется при стабильной скорости потока. По схемным и конструктивным решениям калориметрические концентратомеры аналогичны тепловым расходомерам.

     На  тепловом методе основаны электрические  гигрометры и психрометры точки  росы, применяемые для измерения  влажности газов. Измерение влажности газа по точке росы заключается в определении температуры поверхности воды, при которой устанавливается динамическое равновесие между количеством влаги, испаряющейся с поверхности, и осаждаемой обратно из газа. При практическом осуществлении метода измеряют температуру QP поверхности твердого тела (металлического зеркала), которое охлаждают до тех пор, пока не появится конденсат (роса). С помощью терморегулятора поддерживают температуру поверхности таким образом, чтобы количество конденсата не менялось. Известны гигрометры, в которых охлаждение зеркала производится с использованием эффекта Пельтье.

     По  температурам точки росы QP и исследуемого газа Q ( ) можно определить относительную влажность (в процентах)

      %

     где E(QP) и Е(Q) — упругости насыщенного пара соответственно при температурах QP и Q.

     Достоинствами гигрометров точки росы являются относительно высокая точность и  возможность измерения влажности  воздуха и различных газов  при низких температурах (–160 °С) и высоких давлениях ( Па), недостатками – сложность конструкции и дополнительные погрешности от загрязнения зеркала содержащимися в газах примесями (пыль, агрессивные газы и т. п.).

     Психрометрические гигрометры основаны на измерении разности температур двух термопреобразователей (терморезисторы, термопары): сухого (Qc), находящегося в исследуемой газовой среде, и мокрого (Qм), который смачивается водой и находится в термодинамическом равновесии с газовой средой. Чем меньше влажность этой среды, тем сильнее испаряется влага с поверхности мокрого термопреобразователя и тем ниже его температура Qм. Психрометрические гигрометры в основном используются для измерения влажности газовых сред при температурах 0 – 100 °С. Измерительная цепь таких гигрометров обычно представляет собой автоматический мост или компенсатор.

     Разновидностью  теплового метода анализа является термохимический метод, применяемый для определения суммарной концентрации примесей в органических веществах или для определения чистоты таких веществ. Метод основан на зависимости температуры кристаллизации вещества от суммарного содержания примесей и позволяет определять содержание примесей в диапазоне 0,5 – 1 % с погрешностью 20 %.

     Магнитный метод. Этот метод получил широкое применение для измерения концентрации кислорода в газовых средах, поскольку из всех газов кислород обладает наибольшей магнитной восприимчивостью. Магнитные методы применяются  для поисков полезных ископаемых, определения магнитных включений в немагнитных материалах, в дефектоскопии и магнитном структурном анализе.

      На рисунке  4, а, б показаны конструкция датчика и схема измерительной цепи термомагнитного кислородомера. Датчик представляет собой кольцевую камеру с горизонтальной трубкой, на которую намотана нагревающая платиновая обмотка, разделенная на две секции r1 и r2. У левого конца горизонтальной трубки расположены полюсные наконечники магнита NS, поэтому парамагнитный газ всасывается с левой стороны в горизонтальную трубку и в ней подогревается.

     Рисунок 4 - Конструкция датчика (а) и схема измерительной цепи термомагнитного кислородомера (б)

 

     У левого конца горизонтальной трубки расположены полюсные наконечники  магнита NS, поэтому парамагнитный газ всасывается с левой стороны в горизонтальную трубку и в ней подогревается. Так как при нагревании газа его магнитная восприимчивость падает, то холодный газ, втягиваясь в магнитное поле, будет выталкивать нагретый газ. В результате в горизонтальной трубке газ движется слева направо со скоростью, пропорциональной концентрации кислорода в испытуемой газовой смеси. Левая секция r1 охлаждается холодной смесью, поступающей из камеры. В правую половину горизонтальной трубки газовая смесь поступает уже нагретой, благодаря чему охлаждение правой секции обмотки r2 значительно меньше, чем левой. Обе секции обмотки включены в два соседних плеча моста.

     Высокая точность измерения при больших  концентрациях кислорода достигается  в результате совместного применения теплового и термомагнитного методов измерений. Основанные на этом принципе газоанализаторы обеспечивают измерения концентрации кислорода в диапазоне 98—100 % объемных с абсолютной погрешностью 0,1 %.

     Магнитные кислородомеры применяются для  измерения концентраций кислорода в широком диапазоне от 0 до 100% объемных в различных газовых смесях с основной погрешностью 0,1 – 5 %. Постоянная времени таких газоанализаторов  10 – 90 с. 
 

     3 Ионизационные методы

     Ионизационные методы основаны на ионизации анализируемого вещества и измерении ионного тока, пропорционального концентрации определяемого компонента. Они широко применяются в вакуумметрах, ионизационных газоанализаторах, в масс-спектрометрах, а также для измерения аэрозолей, влажности газов и др. Существуют разнообразные способы ионизации анализируемого вещества. Наибольшее применение для целей анализа получили:

     а) ионизация газов электронами, возникающими вследствие автоэлектронной эмиссии (преобразователи с холодным катодом) и термоэлектронной эмиссии (преобразователи с горячим катодом);

     б) электроразрядный способ ионизации, основанный на зависимости характеристик электрического разряда в газах от их состава;

     в) ионизация за счет облучения анализируемого вещества радиоактивным и рентгеновским излучением;

     г) термическая ионизация молекул в пламени водорода;

     д) ионизация с помощью лазерного излучения.

     Наряду  с указанными методами ионизации  для анализа находят также применение и ряд других способов, таких, как окислительно-ионизационный, способ поверхностной ионизации, эмиссия положительных ионов, захват электронов, фотоионизационный и др.

     Ионизация атомов и молекул электронами, возникающими вследствие авто- и термоэлектронной эмиссии, широко применяется в вакуумметрах и масс-спектрометрических анализаторах. Датчик такого ионизационного вакуумметра обычно представляет собой вакуумный триод с патрубком для присоединения объекта, где измеряется вакуум. При постоянных значениях анодного напряжения и тока накала значение ионного тока, проходящего через сетку, зависит от абсолютной концентрации газа в межэлектродном пространстве. Диапазон измерений таких вакуумметров составляет Па. При больших давлениях может перегореть катод. Чувствительность датчика 75 мкА/Па. На 1–2 порядка больше чувствительность и верхний предел измерений у вакуумметров с магнитоэлектроразрядным датчиком, в котором под действием магнитного поля увеличивается длина пробега электронов и соответственно ионный ток. Недостатком таких вакуумметров является зависимость показаний от рода газа и внешних магнитных полей.

     Ионизационный метод с использованием радиоактивного излучения применяется в вакуумметрах, газоанализаторах и детекторах хроматографов . Для ионизации газа обычно используются α (ядра атомов гелия)- и                  β (электроны, позитроны)-излучения, обладающие большой ионизирующей способностью.

     Наиболее  распространенными разновидностями  этого метода являются методы, непосредственной ионизации, атомов и молекул анализируемого газа радиоактивным излучением и ионизация с помощью метастабильных атомов. Первый способ ионизации, в частности, применяется в радиоактивных ионизационных вакуумметрах, состоящих из ионизационной камеры и измерительной цепи, входной усилитель которой монтируется в одном корпусе с преобразователем и обычно представляет собой электрометрический усилитель. Источник α-излучения и коллектор ионов расположены внутри камеры, которая при помощи патрубка соединяется с объектом, где измеряется вакуум. Такие вакуумметры характеризуются хорошей воспроизводимостью результатов измерений (разброс не более        1 – 2 %) и практически линейной зависимостью между ионным током и давлением газа (а следовательно, и абсолютной концентрацией газа) в широком диапазоне — от 0,1 до Па. На рисунке 5 оказана схема дифференциального ионизационного анализатора газов, состоящего из двух идентичных ионизационных камер 1 и 2, через одну из которых пропускается чистый газ-носитель (гелий или водород), а через другую – газ-носитель с анализируемым компонентом газа. Камеры имеют общий коллектор ионов 4 и идентичные источники β-излучения 3, выполненные в виде таблеток из 90Sr, 85Kr или, 147Рm. Разностный ток ионизационных камер создает падение напряжения на высокоомном резисторе R, которое усиливается электрометрическим усилителем 6 и регистрируется самопишущим прибором 5.

      Рисунок 5 - Схема дифференциального ионизационного анализатора  газов

     Такие анализаторы имеют практически  линейную характеристику в широком диапазоне, малую инерционность, высокую чувствительность и способны работать при температурах до 300 °С.

     Метод ионизации метастабильными атомами, который можно назвать методом  двойной ионизации, применяется  в аргоновых и гелиевых анализаторах для измерения концентрации широкого класса веществ. Метод заключается в том, что в электрическом поле с помощью β-излучения происходит ионизация атомов газа-носителя аргона, вследствие чего в ионизационной камере создается большая концентрация метастабильных атомов аргона с энергией 11,8 эВ, которые, в свою очередь, ионизируют молекулы анализируемого компонента. Для анализа веществ, имеющих более высокий потенциал ионизации, в качестве газа-носителя применяется гелий, энергия метастабильного состояния атомов которого равна 19,8 эВ. 

     Хорошими  метрологическими характеристиками   обладает триодный аргоновый датчик (рисунок 6), у которого, кроме анода 1, катода 2 и источника     β-излучения 3, имеется коллекторный электрод 4, сигнал с которого подается на электрометрический усилитель. Порог чувствительности такого датчика г/с, постоянная времени 1 – 5 с, нелинейность характеристики 1,2 %.

      

      Рисунок 6 - Триодный аргоновый датчик

     Ионизационно-пламенный метод (рисунок 7) основан на ионизации молекул исследуемого вещества в водородном пламени. Чистый водород, сгорая в воздухе, почти не образует ионов, поэтому водородное пламя имеет очень большое сопротивление (1012—1014 Ом). Если вместе с водородом в преобразователь подступает исследуемый горючий газ, то в результате термической диссоциации и окисления происходит ионизация молекул газа и сопротивление между электродами 1 и 2 преобразователя резко падает. Вследствие этого увеличиваются ток и падение напряжения на резисторе R, которое через усилитель подается на самопишущий прибор.

     

     Рисунок 7 - Схема ионизационно-пламенного анализатора

     Если  вместе с водородом в преобразователь  подступает исследуемый горючий газ, то в результате термической диссоциации и окисления происходит ионизация молекул газа и сопротивление между электродами 1 и 2 преобразователя резко падает. Вследствие этого увеличиваются ток и падение напряжения на резисторе R, которое через усилитель подается на самопишущий прибор. Метод диссоциаций и окисления происходит ионизация молекул газа и сопротивление между электродами 1 и 2 преобразователя резко падает. Вследствие этого увеличиваются ток и падение напряжения на резисторе R, которое через усилитель подается на самопишущий прибор. Метод позволяет обнаруживать микроконцентрации органических соединений, поступающих в преобразователь со скоростью    10–12 – 10–14 г/с. Чувствительность анализаторов составляет 104 – 105 , постоянная времени 1 мс. Линейный рабочий диапазон 106 – 107, рабочая температура до 400 °С. 

     4 Спектрометрические (волновые) методы

     Спектрометрические  методы основаны на избирательной способности  различных веществ поглощать, изучать, отражать, рассеивать или преломлять различного рода излучения. Эта группа методов включает в себя многочисленные методы, в которых используется широкий спектр длин  волн – от  звукового диапазона (103 Гц) до рентгеновских и гамма-излучений (1018 Гц).

Информация о работе Методы и преобразователи для измерения концентрации вещества