Металлы. Неметаллы

Автор работы: Пользователь скрыл имя, 10 Мая 2013 в 14:44, реферат

Описание

Все элементы делятся на металлы и неметаллы. Из 107 элементов 85 относятся к металлам. К неметаллам относят следующие элементы: гелий, неон, аргон, криптон, ксенон, радон, фтор, хлор, бром, йод, астат, кислород, сера, селен, теллур, азот, фосфор, мышьяк, углерод, кремний, бор, водород. Однако это деление условное. При определенных условиях некоторые металлы могут проявлять неметаллические свойства, а некоторые неметаллы – металлические свойства.

Работа состоит из  1 файл

химия. металлы и неметаллы.doc

— 150.50 Кб (Скачать документ)

2. В группах сверху вниз кислотные свойства высших оксидов постепенно ослабевают. Об этом можно судить по свойствам кислот, соответствующих этим оксидам.

3. Возрастание кислотных свойств высших оксидов соответствующих элементов в периодах слева направо объясняется постепенным возрастанием положительного заряда ионов этих элементов.

4. В главных подгруппах периодической системы химических элементов в направлении сверху вниз кислотные свойства высших оксидов неметаллов уменьшаются.

Общие формулы водородных соединений по группам периодической  системы химических элементов приведены в таблице №3.

 

Общие формулы соединений по группам

I

II

III

IV

V

VI

VII

RH

RH2

RH3

RH4

RH3

H2R

HR

Нелетучие водородные соединения

Летучие водородные соединения


Таблица №3.

 

С металлами водород  образует (за некоторым исключением) нелетучие соединения, которые являются твердыми веществами немолекулярного  строения. Поэтому их температуры  плавления сравнительно высоки.

С неметаллами водород  образует летучие соединения молекулярного строения. В обычных условиях это газы или летучие жидкости.

В периодах слева направо  кислотные свойства летучих водородных соединений неметаллов в водных растворах  усиливается. Это объясняется тем, что ионы кислорода имеют свободные  электронные пары, а ионы водорода – свободную орбиталь, то происходит процесс, который выглядит следующим образом:

H2O + HF à H3O + F

Фтороводород в водном растворе отщепляет положительные  ионы водорода, т.е. проявляет кислотные  свойства. Этому процессу способствует и другое обстоятельство: ион кислорода имеет неподеленную электронную пару, а ион водорода – свободную орбиталь, благодаря чему образуется донорно-акцепторная связь.

При растворении аммиака  в воде происходит противоположный  процесс. А так как ионы азота имеют неподеленную электронную пару, а ионы водорода – свободную орбиталь, возникает дополнительная связь и образуются ионы аммония NH4+        и гидроксид-ионы ОН-. В результате раствор приобретает основные свойства. Этот процесс можно выразить формулой:

H2O + NH3 à NH4 + OH

Молекулы аммиака в  водном растворе присоединяют положительные  ионы водорода, т.е. аммиак проявляет  основные свойства.

Теперь рассмотрим, почему водородное соединение фтора – фтороводород HF – в водном растворе является кислотой, но более слабой, чем хлороводородная. Это объясняется тем, что радиусы ионов фтора значительно меньше, чем ионов хлора. Поэтому ионы фтора гораздо сильнее притягивают к себе ионы водорода, чем ионы хлора. В связи с этим степень диссоциации фтороводородной кислоты значительно меньше, чем соляной кислоты, т.е. фтороводородная кислота слабее соляной кислоты.

Из приведенных примеров можно сделать следующие общие  выводы:

1. В периодах слева направо у ионов элементов положительный заряд увеличивается. В связи с этим кислотные свойства летучих водородных соединений элементов в водных растворах усиливаются.

2. В группах сверху вниз отрицательно заряженные анионы все слабее притягивают положительно заряженные ионы водорода Н+. В связи с этим облегчается процесс отщепления ионов водорода Н+ и кислотные свойства водородных соединений увеличиваются.

3. Водородные соединения неметаллов, обладающие в водных растворах кислотными свойствами, реагируют со щелочами. Водородные же соединения неметаллов, обладающие в водных растворах основными свойствами, реагируют с кислотами.

4. Окислительная активность водородных соединений неметаллов в группах сверху вниз сильно увеличивается. Например, окислить фтор из водородного соединения HF химическим путем нельзя, окислить же хлор из водородного соединения HCl можно различными окислителями. Это объясняется тем, что в группах сверху вниз резко возрастают атомные радиусы, в связи с чем отдача электронов облегчается.

 

МЕТАЛЛЫ

 

В настоящее время  известно 105 химических элементов, большинство из них - металлы. Последние весьма распространены в природе и встречаются в виде различных соединений в недрах земли, водах рек, озер, морей, океанов, составе тел животных, растений и даже в атмосфере.

По своим свойствам  металлы резко отличаются от неметаллов. Впервые это различие металлов и неметаллов определил М. В. Ломоносов. "Металлы, - писал он, - тела твердые, ковкие блестящие".

Причисляя тот или  иной элемент к разряду металлов, мы имеем в виду наличие у него определенного комплекса свойств:

1. Плотная кристаллическая структура.

2.Характерный металлический блеск.

3.Высокая теплопроводность и электрическая проводимость.

4. Уменьшение электрической  проводимости с ростом температуры.

5. Низкие значения  потенциала ионизации, т.е. способность  легко отдавать электроны.

6. Ковкость и тягучесть.

7. Способность к образованию сплавов.

Все металлы и сплавы, применяемые в настоящее время  в технике, можно разделить на две основные группы. К первой из них относят черные металлы - железо и все его сплавы, в которых  оно составляет основную часть. Этими сплавами являются чугуны и стали. В технике часто используют так называемые легированные стали. К ним относятся стали, содержащие хром, никель, вольфрам, молибден, ванадий, кобальт, титан и другие металлы. Иногда в легированные стали входят 5-6 различных металлов. Методом легирования получают различные ценные стали, обладающие в одних случаях повышенной прочностью, в других - высокой сопротивляемостью к истиранию, в третьих - коррозионной устойчивостью, т.е. способностью не разрушаться под действием внешней среды.

Ко второй группе относят  цветные металлы и их сплавы. Они  получили такое название потому, что  имеют различную окраску. Например, медь светло-красная, никель, олово, серебро - белые, свинец - голубовато-белый, золото -желтое. Из сплавов в практике нашли большое применение: бронза - сплав меди с оловом и другими металлами, латунь - сплав меди с цинком, баббит - сплав олова с сурьмой и медью и др.

Это деление на черные и цветные металлы условно. Наряду с черными и цветными металлами выделяют еще группу благородных металлов: серебро, золото, платину, рутений и некоторые другие. Они названы так потому, что практически не окисляются на воздухе даже при повышенной температуре и не разрушаются при действии на них растворов кислот и щелочей.

II. Физические свойства металлов.

С внешней стороны  металлы, как известно, характеризуются  прежде всего особым "металлическим" блеском, который обусловливается  их способностью сильно отражать лучи света. Однако этот блеск наблюдается  обыкновенно только в том случае, когда металл образует сплошную компактную массу. Правда, магний и алюминий сохраняют свой блеск, даже будучи превращенными в порошок, но большинство металлов в мелкораздробленном виде имеет черный или темно-серый цвет. Затем типичные металлы обладают высокой тепло- и электропроводностью, причем по способности проводить тепло и ток располагаются в одном и том же порядке: лучшие проводники - серебро и медь, худшие - свинец и ртуть. С повышением температуры электропроводность падает, при понижении температуры, наоборот, увеличивается.

Очень важным свойством  металлов является их сравнительно легкая механическая деформируемость. Металлы  пластичны, они хорошо куются, вытягиваются в проволоку, прокатываются в  листы и т.п.

Характерные физические свойства металлов находятся в связи с особенностями их внутренней структуры. Согласно современным воззрениям, кристаллы металлов состоят из положительно заряженных ионов и свободных электронов, отщепившихся от соответствующих атомов. Весь кристалл можно себе представить в виде пространственной решетки, узлы которой заняты ионами, а в промежутках между ионами находятся легкоподвижные электроны. Эти электроны постоянно переходят от одних атомов к другим и вращаются вокруг ядра то одного, то другого атома. Так как электроны не связаны с определенными ионами, то уже под влиянием небольшой разности потенциалов они начинают перемещаться в определенном направлении, т.е. возникает электрический ток.

Наличием свободных  электронов обусловливается и высокая  теплопроводность металлов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них - следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.

По плотности металлы  условно подразделяются на две большие  группы: легкие металлы, плотность которых  не больше 5 г/см3, и тяжелые металлы - все остальные.

Частицы металлов, находящихся  в твердом и жидком состоянии, связаны особым типом химической связи - так называемой металлической  связью. Она определяется одновременным  наличием обычных ковалентных связей между нейтральными атомами и кулоновским притяжением между ионами и свободными электронами. Таким образом, металлическая связь является свойством не отдельных частиц, а их агрегатом.

III. Химические свойства металлов.

Основным химическим свойством металлов является способность  их атомов легко отдавать свои валентные электроны и переходить в положительно заряженные ионы. Типичные металлы никогда не присоединяют электронов; их ионы всегда заряжены положительно.

Легко отдавая при  химических реакциях свои валентные  электроны, типичные металлы являются энергичными восстановителями. Способность к отдаче электронов проявляется у отдельных металлов далеко не в одинаковой степени. Чем легче металл отдает свои электроны, тем он активнее, тем энергичнее вступает во взаимодействие с другими веществами. Опустим кусочек цинка в раствор какой-нибудь свинцовой соли. Цинк начинает растворяться, а из раствора выделяется свинец. Реакция выражается уравнением:

Zn + Pb(NO3)2 = Pb + Zn(NO3)2

Из уравнения следует, что эта реакция является типичной реакцией окисления-восстановления. Сущность ее сводится к тому, что атомы цинка отдают свои валентные электроны ионам двухвалентного свинца, тем самым превращаясь в ионы цинка, а ионы свинца восстанавливаются и выделяются в виде металлического свинца. Если поступить наоборот, то есть погрузить кусочек свинца в раствор цинковой соли, то никакой реакции не произойдет. Это показывает, что цинк более активен, чем свинец, что его атомы легче отдают, а ионы труднее присоединяют электроны, чем атомы и ионы свинца.

Вытеснение одних металлов из их соединений другими металлами впервые было подробно изучено русским ученым Бекетовым, расположившим металлы по их убывающей химической активности в так называемый "вытеснительный ряд". В настоящее время вытеснительный ряд Бекетова носит название ряда напряжений.

Металлы, расположенные в порядке возрастания их стандартных

электродных потенциалов, и образуют электрохимический ряд напряжений металлов: Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb,

H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Ряд напряжений характеризует химические свойства металлов:

  1. Чем меньше электродный потенциал металла, тем больше его восстановительная способность.
  2. Каждый металл способен вытеснять(восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений после него.
  3. Все металлы, имеющие отрицательный стандартный электродный потенциал, то есть находящиеся в ряду напряжений левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре.

Кроме того, нужно иметь  ввиду, что высокая электрохимическая активность металлов не всегда означает его высокую химическую активность. Например, ряд напряжений начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

IV. Коррозия металлов.

Почти все металлы, приходя  в соприкосновение с окружающей их газообразной или жидкой средой, более или менее быстро подвергаются с поверхности разрушению. Причиной его является химическое взаимодействие металлов с находящимися в воздухе газами, а также водой и растворенными в ней веществами.

Всякий процесс химического разрушения металлов под действием окружающей среды называют коррозией.

Проще всего протекает  коррозия при соприкосновении металлов с газами. На поверхности металла образуются соответствующие соединения: оксиды, сернистые соединения, основные соли угольной кислоты, которые нередко покрывают поверхность плотным слоем, защищающим металл от дальнейшего воздействия тех же газов.

Иначе обстоит дело при соприкосновении металла с жидкой средой - водой и растворенными в ней веществами.

Образующиеся при этом соединения могут растворяться, благодаря  чему коррозия распространяется дальше вглубь металла. Кроме того, вода, содержащая растворенные вещества, является проводником электрического тока, вследствие чего постоянно возникают электрохимические процессы, которые являются одним из главных факторов, обуславливающих и ускоряющих коррозию.

Информация о работе Металлы. Неметаллы