Контрольная работа по "Химии"

Автор работы: Пользователь скрыл имя, 24 Января 2012 в 16:35, контрольная работа

Описание

Вопрос №1. Наличие, каких групп углеводородов составляющих основу нефти используют желательно в автомобильных бензинах?

Работа состоит из  1 файл

контрольная.docx

— 28.68 Кб (Скачать документ)

Вопрос  №1. Наличие, каких групп углеводородов составляющих основу нефти используют желательно  в автомобильных бензинах? 

Ответ № 1.

  От химического состава и структуры углеводородов нефти зависят технологический процесс ее переработки и эксплуатационные качества получаемых при этом автомобильных топлив и масел. В свою очередь, химический состав и структура углеводородов различаются у нефти в различных месторождениях.

  В химическом отношении нефть представляет собой сложную жидкость, состоящую преимущественно из углеводородов, т. е. соединений углерода с водородом. Суммарное содержание углерода и водорода в нефти около 97-98 % (по массе), в том числе углерода 83-87 % и водорода 12-14 %.

Основу  нефти составляют жидкие углеводороды, в которых растворены газообразные и твердые углеводороды. Кроме  углеводородов, в состав нефти входят (2-3 % по массе) химические соединения, содержащие кислород, серу и азот, а также  свободная сера.

 Многочисленные углеводороды, входящие в состав нефти, различаются молекулярной массой, количеством атомов углерода и водорода в молекуле, характером валентных связей между атомами углерода, строением.

Молекула  самого простого углеводорода нефти - метана - содержит один атом углерода. Углеводороды циклической и цепной структуры, изомерные и неизомерные, предельные и непредельные проявляют себя в топливах и маслах по-разному.

 Все углеводороды нефти условно подразделяют на следующие группы (классы, ряды): парафиновые (алканы); нафтеновые (цикланы); ароматические (арены).

 Однако значительная часть углеводородов нефти имеет смешанное (гибридное) строение самого разнообразного сочетания.

 Гибридные углеводороды делят на три группы: парафино-циклопарафиновые; парафино-ароматические; парафино-циклопарафино-ароматические.

   Природные нефти и продукты их перегонки содержат парафиновые (метановые), циклические (насыщенные) и ароматические углеводороды. В незначительных количествах иногда встречаются ненасыщенные углеводороды. По характеру преобладания той или иной группы углеводородов, нефти подразделяются на метановые, нафтеновые, ароматические.

  Метановые (парафиновые) углеводороды нефти содержат от одного до сорока атомов углерода в цепи. Первые пять соединений (от С1 до С5) в обычных условиях газообразны. Они в основном входят в природные или попутные газы, находясь в нефти в растворенном состоянии. В их составе преобладает метан (до 70%). Наряду с газообразными и жидкими углеводородами, нефти содержат высококипящие (~3000С) вещества, которые в обычных условиях бывают твердыми. Средняя относительная молекулярная масса их может быть близка к 500, что соответствует полимерам, содержащим в цепи 40 атомов углерода. Из твердых углеводородов нефти можно выделить три основных компонента - парафин, церезин и озокерит.

  Парафин - белый полупрозрачный продукт с температурой плавления 600С; он содержит в основном смесь предельных углеводородов нормального строения. Церезин состоит преимущественно из слаборазветвленных изопарафинов; температура его плавления близка к 800С. Озокерит представляет собой смесь высококипящих предельных углеводородов.

  Нафтены объединяют циклопарафиновые соединения. Это могут быть и моно-, и полициклические соединения с общей формулой CnH2n, CnH2n-2, CnH2n-4. Атомы углерода в них соединены простой одинарной связью в циклические структуры, содержащие чаще всего каркас из пяти и шести углеродных атомов. Обычно в нефтях может находиться до 80% циклопарафинов. Нафтены имеют более высокую температуру кипения и плавления, чем метановые углеводороды с тем же числом атомов углерода.

  Последняя группа углеводородов в составе нефти - ароматические. Их содержание в нефти может доходить до 35%. Ароматические углеводороды имеют более высокую температуру кипения, чем нафтеновые компоненты углеводородной части нефти. Этот класс соединений особенно беден водородом и обладает более высокой термической устойчивостью. Ароматические углеводороды представлены в нефти моно- и полициклическими соединениями.

   Алкены в природной нефти содержатся в крайне малых количествах. Также невелико содержание в нефти кислород - и азотсодержащих соединений. Основное количество кислородсодержащих соединений нефти приходится на органические кислоты и фенолы. Азотсодержащие соединения находятся в нефти в виде гетероциклических соединений, одно из них - производное пиррола - порфирин. Продукты преобразования его придают нефти такое отличительное свойство, как оптическая активность.

  Следует отметить сернистые соединения, содержащиеся в нефти: неорганические соединения - сероводород и свободная сера, органические - меркаптаны, алифатические сульфиды, сульфоновые кислоты, эфиры серной кислоты. Содержание сернистых соединений достаточно высоко и может достигать 6%. Они ухудшают качество нефти, снижают ее потребительную стоимость.

  После отгонки всех остальных фракций нефти остаются смолы - сложная смесь высокомолекулярных продуктов. Их в нефти может быть довольно много - до 40%. Один из компонентов смол - асфальтен. Это смесь твердых высоплавких веществ черного цвета.

  Наряду с органическими соединениями в состав нефти входят соли различных неорганических кислот. Нефть извлекает их, проходя через различные слои породы. Эти соединения играют значительную роль в характеристике зольного остатка после сожжения нефти. Содержание золы составляет сотые доли процента, а на долю металлов в них приходится до 60%.

  Бензин - самый важный продукт переработки нефти; из сырой нефти производится до 50% бензина. Эта величина включает природный бензин, бензин крекинг-процесса, продукты полимеризации, сжиженные нефтяные газы и все продукты, используемые в качестве промышленных моторных топлив. Каждому процессу переработки нефти предъявляются требования по количеству и качеству производимого бензина. 
 
 

Вопрос  №2. Какие  процессы применяют для  получения  высокооктано-

вых  автомобильных бензинов из нефти? 

Ответ№2.

  Одним из основных процессов производства неэтилированных высокооктановых бензинов является процесс каталитического риформинга, осуществляемый на платиновых или полиметаллических катализаторах.  

Главными  недостатками каталитического риформинга являются: 

1. Чувствительность  катализатора к природе сырья  - предпочтительным сырьем являются  углеводородные фракции 85 - 180°С. При переработке сырья с высоким  содержанием парафиновых углеводородов  практически невозможно производить  бензины с ОЧ выше 82 ММ. 

2. Высокая  чувствительность катализатора  к содержанию серы в сырье  - требуется гидроочистка. 

3. Высокое  содержание бензола в риформатах (5 - 15%), что ограничивает их применение в качестве автобензинов без дополнительной переработки. 

4. Низкие  скорости процесса по сырью,  следствием чего является необходимость  использования больших количеств  дорогостоящих катализаторов и  строительства крупномасштабных  установок. 

5. Необходимость  в водородном хозяйстве для  гидроочистки и риформинга. 

 Вследствие всех этих факторов строительство малотоннажных НПЗ на основе каталитического риформинга требует огромных капитальных затрат и нерентабельно.

 Наиболее перспективным для использования на малотоннажных НПЗ в настоящее время является процесс риформирования прямогонных бензинов в высокооктановые бензины, обогащенные ароматическими углеводородами с использованием катализаторов на основе цеолитов группы пентасилов, без их предварительной гидроочистки.

  Повышение детонационной стойкости перерабатываемых на цеолитсодержащих катализаторах бензиновых фракций происходит в основном при конверсии алифатических парафинов и нафтенов в ароматические углеводороды. Использование катализаторов, содержащих цеолиты группы пентасилов, позволяет снизить образование тяжелых ароматических углеводородов. Гидрирующие / дегидрирующие компоненты в составе катализатора - обычно такие металлы как Zn, Ga, Cd, Pt, Pb и другие - позволяют повысить селективность образования ароматических углеводородов, активность катализатора и продолжительность его работы до регенерации. Катализатор может включать и другие компоненты.

  Существует ряд способов получения моторных топлив из углеводородного сырья в присутствии катализаторов ароматизации, например патенты США 3953366, 4590323, 4861933, Европейские патенты 0355213, 0964903, Российские патенты 2103322, 2208624, 2218319, 2024585. Условия каталитической конверсии бензиновых фракций зависят от их состава, требований к качеству продукта и от активности используемого катализатора. Типичные условия следующие: температура 350 - 500°С, давление до 3 МПа, объемная скорость подачи сырья до 5 ч.-1. Из прямогонного бензина с концом кипения 180°С можно получить с выходом 40 - 80% бензин с октановым числом 81-88 ИМ, содержащий до 30 массовых процентов ароматических углеводородов. При конверсии сырья образуется 20 - 60 массовых процентов водородсодержащего газа (около 60 объемных процентов водорода), включающего 70 - 75 массовых процентов пропана и бутана.

  В качестве примера промышленно осуществленного процесса ароматизации можно привести способ получения моторных топлив из фракций газового конденсата на цеолитных катализаторах (Агабалян Л.Г. и др. Каталитическая переработка прямогонных фракций газового конденсата в высокооктановые топлива. - Химия и технология топлив и масел, 1988, №5, с. 6).

  Согласно данному способу высокооктановые бензины производят процессом "Цеоформинг" из прямогонных бензиновых фракций, выделяемых из газовых конденсатов. Процесс "Цеоформинг" осуществляют следующим образом: прямогонную бензиновую фракцию разделяют с выделением фракций НК - 58°С и > 58°С, вторую фракцию подвергают переработке при повышенных температурах (до 460°С) и избыточном давлении (до 5 МПа) на цеолитсодержащем катализаторе со скоростью до 5 ч.-1.

  Продукты реакции фракционируют с выделением углеводородных газов, остаточной фракции >1950С и высокооктановой фракции, которую смешивают с фракцией НК - 58СС для получения целевого бензина.

  Основными недостатками данного способа, также как и остальных, являются относительно низкие выходы и октановые числа получаемых бензинов, высокое содержание бензола в бензине, низкая скорость по сырью, длительная регенерация закоксованного катализатора.

  Возможность полного устранения или минимизации большинства недостатков, присущих процессу "Цеоформинг", связана с созданием новых цеолитных катализаторов, обладающих, с одной стороны, высокой активностью в процессах ароматизации, и, с другой стороны, повышенной стабильностью к закоксовыванию. Разработка нами таких катализаторов привела к созданию нового процесса - "Аэроформинг", в котором активность катализатора позволяет длительное время работать на скоростях до 20 ч.-1, при этом содержание бензола в катализате (до 1% и общей ароматики до 35%) позволяет получать бензин в соответствии с требованиями Евро-4. 

Вопрос  №3. Из чего состоят пластичные смазки и какого их назначение? 

Ответ№3. 

 Пластичные смазки - самостоятельный вид материалов, обеспечивающих надежность и долговечность техники(ранее их называли консистентными). Их мировое производство составляет около миллиона тонн в год, что значительно меньше выпуска смазочных масел (около 40 млн. т/год).

 Итак, пластичная смазка - это структурированная высокодисперсная система, которая состоит, как правило, из базового масла и загустителя. При обычных температурах и малых нагрузках она проявляет свойства твердого тела, т. е. сохраняет первоначальную форму, а под нагрузкой начинает деформироваться и течь подобно жидкости. После снятия нагрузки пластичная смазка вновь застывает. Основное ее назначение - уменьшить износ поверхностей трения и продлить тем самым срок службы деталей машин и механизмов. В отдельных случаях смазки не столько уменьшают износ, сколько упорядочивают его, предотвращают трение и заклинивание смежных поверхностей, препятствуют проникновению агрессивных жидкостей, абразивных частиц, газов и паров. Смазки, которые практически не изменяют своих показателей качества весь период работы в узле трения, относятся к «вечным» (т. е. закладываются одноразово на весь период работы техники) или долго работающим (с большим периодом замены).

   Почти все смазки обладают антикоррозийными свойствами. Для защиты металлических поверхностей от коррозии при транспортировке и длительном хранении разработаны консервационные смазки. Для герметизации зазоров в механизмах и оборудовании, а также соединений трубопроводов и запорной арматуры созданы уплотнительные смазки с лучшими герметизирующими свойствами, чем у масел.

Информация о работе Контрольная работа по "Химии"