Контрольная работа по химическим основам технологии пищевых производств

Автор работы: Пользователь скрыл имя, 22 Января 2012 в 16:32, контрольная работа

Описание

Белки или протеины - высокомолекулярные азотсодержащие органические соединения, молекулы которых построены из остатков аминокислот. Названием белки (или белковые вещества) в отечественной литературе принято обозначать класс соединений, которые по аналогии с белком куриного яйца при кипячении (денатурации) приобретают белый цвет.

Содержание

1. Дайте характеристику проблемы дефицита белка и каковы пути ее решения?
10. Какие физико-химические превращения претерпевают белки в технологическом потоке производства пищевых продуктов?
19. Гидролиз полисахаридов его использование в пищевых технологиях.
30. Методы выделения и анализа жиров. Кислотное ,йодное число и число омыления жиров.
40. методы определения содержания макро и микроэлементов.
51. как влияет концентрация субстрата и фермента на скорость ферментативной реакции.
62. дать определение понятия биолгически активные добавки. Привести их классификацию.

Работа состоит из  1 файл

хим основы 1.docx

— 88.31 Кб (Скачать документ)

     В ближайшие годы растениеводство  и животноводство, вероятно, будут  основными источниками пищевого белка, однако важное место в решении  белковой проблемы отводится и рыболовству. В то же время запасы морепродуктов  ограничены, поэтому поиск новых  эффективных путей покрытия белкового  дефицита с учетом природных ресурсов каждой страны остается актуальным. Так, в недавнем прошлом Россия была единственной страной, производящей микробиологический белок для кормления животных - БВК. Из объема свыше 1 млн т/год 60% продукции выпускалось на основе парафинов нефти, а 40% - на основе гидролиза-тов древесины. Организация производства белка осуществлялась и с использованием спирта и природного газа. Такие технологические процессы экономически выгодны при отсутствии соевого белка для кормления животных. По содержанию незаменимых аминокислот и витаминов дрожжевая масса не уступает, а иногда даже и превосходит соевые белки. Добавка БВК в корма экономит фуражное зерно (5 т на 1 т БВК) и увеличивает привесы животных.

     В решении проблемы дефицита белка  за последние два десятилетия  определилось новое биотехнологическое направление - получение пищевых  объектов с повышенным содержанием  и улучшенным качеством белка  методами генетической инженерии. Сущность генетической инженерии заключается  в переносе генов любого организма  в клетку реципиента для получения  растений, животных или микроорганизмов  с рекомбинированными генами, а следовательно, и с новыми полезными свойствами. Растения, животные и микроорганизмы, полученные генетической инженерией, называются генетически измененными, а продукты их переработки - трансгенными пищевыми продуктами.  
 
 
 

10. Какие физико-химические  превращения претерпевают  белки в технологическом  потоке  производства  пищевых продуктов? 

     Нативная трехмерная структура белков поддерживается разнообразием внутри- и межмолекулярных сил и поперечных связей. Любое изменение условий среды в технологических потоках производства пищевых продуктов оказывает влияние на нековалентные связи молекулярной структуры и приводит к разрушению четвертичной, вторичной и третичной структуры. Разрушение нативной структуры, сопровождающееся потерей биологической активности (ферментативной, гормональной), называют денатурацией. С физической точки зрения денатурацию рассматривают как разупорядочение конформации полипептидной цепи без изменения первичной структуры.

     Большинство белков денатурируются в присутствии  сильных минеральных кислот или  оснований, при нагревании, охлаждении, обработке поверхностно-активными  веществами (додецилсульфатом), мочевиной, гуанидином, тяжелыми металлами (Ag, Pb, Hg) или органическими растворителями (этанолом, метанолом, ацетоном). Широкое применение кислот, оснований, солей, органических растворителей предусматривается в практике выделения белков из пищевого сырья и готовых продуктов при изучении их свойств и структурных особенностей, а также при экстракции и очистке в технологии выделения концентратов и изолятов. Денатурированные белки обычно менее растворимы в воде, так как их полипептидные цепи настолько сильно переплетены между собой, что затрудняется доступ молекул растворителя к радикалам остатков аминокислот.

     Большая часть белков денатурируется при 60–80°С, однако встречаются белки и термостабильные, например, α-лактоглобулин молока и α-амилазы некоторых бактерий. Повышенная устойчивость белков к нагреванию часто обуславливается наличием в их составе большого количества дисульфидных связей. Однако степень денатурирующего воздействия температуры на белки зависит и от их влажности, реакции и солевого состава среды и присутствия небелковых соединений. Например, температура денатурации белков сои и подсолнечника существенно понижается в присутствии кислот жирного ряда, в кислой и влажной среде, но повышается в присутствии сахарозы и крахмала.

     Факторы, вызывающие денатурацию белков, имеют  особо важное значение для регулирования активности ферментов. Любые воздействия, направленные на стабилизацию вторичной и третичной структуры, приводят к повышению активности ферментов, а те, которые разрушают нативную структуру, – к их инактивации. При температуре от 40–60°С до 100°С со значительной скоростью протекает взаимодействие белков с восстанавливающими сахарами, сопровождающееся образованием карбонильных соединений и темноокрашенных продуктов – меланоидинов (реакция Майяра). Сущность реакций меланоидинообразования заключается во взаимодействии группы –NH2 аминокислот с гликозидными гидроксилами сахаров. Сахаро-аминные реакции являются причиной не только потемнения пищевых продуктов, но и уменьшения в них сухого вещества и потерь незаменимых аминокислот (лизина, треонина). Меланоидины понижают биологическую ценность изделий, так как снижается усвояемость аминокислот из-за того, что сахароаминные комплексы не подвергаются гидролизу ферментами пищеварительного тракта. К тому же количество незаменимых аминокислот уменьшается. Это уменьшение происходит не только за счет взаимодействия их с восстанавливающими сахарами, но и за счет взаимодействия между собой функциональных групп –NH2 и –СООН самого белка. Реакции протекают с образованием внутренних ангидридов, циклических амидов и ω–ε изопептидных связей. Изопептиды обнаружены в кератине, молочных белках и белках м.

     Тепловая  денатурация белков является одним  из основных физико-химических процессов, лежащих в основе выпечки хлеба, печенья, бисквитов, пирожных, сухарей, сушки макаронных изделий, получения  экструдатов и сухих завтраков, варки, жарения овощей, рыбы, мяса, консервирования, пастеризации и стерилизации молока. Данный вид превращений относится к полезным, так как он ускоряет переваривание белков в желудочно-кишечном тракте человека (облегчая доступ к ним протеолитических ферментов) и обуславливает потребительские свойства пищевых продуктов (текстуру, внешний вид, органолептические свойства). В связи с тем, что степень денатурации белков может быть различной (от незначительной до полного изменения расположения пептидных цепей с образованием новых ковалентных –S–S-связей), то и усвояемость полимеров может не только улучшаться, но и ухудшаться. Параллельно могут изменяться физико-химические свойства белков. Для хлопковых семян, подвергнутых влаготепловой обработке, зафиксирован, например, переход растворимого азота из одной формы в другую.

     Термическая обработка белоксодержащей пищи при 100– 120°С приводит не к денатурации, а к разрушению (деструкции) макромолекул белка с отщеплением функциональных групп, расщеплением пептидных связей и образованием сероводорода, аммиака, углекислого газа и ряда более сложных соединений небелковой природы. Так, стерилизация молочных, мясных и рыбных продуктов при температуре выше 115°С вызывает разрушение цистеиновых остатков с отщеплением сероводорода, диметилсульфида и цистеиновой кислоты:

H2S CH3-S-CH3 HO2C-CH(NH2)CH2SO3H

Реакции дезамидирования аспарагиновой и глутаминовой аминокислот и дегидратации глицина могут быть причиной образования новых ковалентных связей в белках, так как образуется пирролидонкарбоновая кислота и 2,5-дикетопиперазин (дикетопиперазина много в обжаренных бобах какао):

     Среди продуктов термического распада  белков встречаются соединения, придающие  им мутагенные свойства. Термически индуцированные мутагены образуются в белоксодержащей  пище в процессе ее обжаривания в масле, выпечки, копчения в дыму и сушки. Мутагены содержатся в бульонах, жареной говядине, свинине, домашней птице, жареных яйцах, копченой и вяленой рыбе. Некоторые из них вызывают наследственные изменения в ДНК, и их воздействие на здоровье человека может быть от незначительного до летального.

     Токсические свойства белков при термической  обработке выше 200°С или при более низких температурах, но в щелочной среде, могут обуславливаться не только процессами деструкции, но и реакциями изомеризации остатков аминокислот из L- в D-форму. Присутствие D-изомеров понижает усвояемость белков. Например, термообработка казеина молока при температуре около 200°С снижает биологическую ценность продукта на 50%.

     В сильнощелочных средах, особенно при  высоких температурах, некоторые  остатки аминокислот претерпевают ряд специфических превращений. Так, аргинин превращается в орнитин, цитруллин, мочевину и аммиак, а цистеин – в дегидроаланин с выделением сероводорода.

     Реакционноспособный дегидроаланин конденсируется с остатками лизина, орнитина и цистеина боковых цепей и образует межмолекулярные поперечные связи в белках. В реакцию конденсации могут вступать остатки аргинина, гистидина, треонина, серина, тирозина и триптофана. Питательная ценность белков с новыми поперечными связями ниже, чем у белков с нативной структурой, поэтому образование их в технологических процессах производства пищевых продуктов нежелательно. К тому же в опытах на крысах показано, что образование, например, лизиноаланина стимулирует нефрокальциноз, диарею и облысение.

     Обработка сырья растворами щелочей широко используется при получении изолятов и концентратов белков. Чем ниже значение рН, температура и время обработки, тем выше содержание незаменимых аминокислот в белке. Например, при повышении рН раствора с 8,5 до 12,5 при экстракции белка из пшеничных отрубей количество лизина в нем уменьшается на 40%, треонина – на 26%, а валина – на 24%. Мягкие температурные режимы предохраняют от образования в больших количествах нежелательных аминокислотных фрагментов. В то же время среди специалистов обсуждается вопрос о введении предельно допустимых концентраций лизиноаланина (например, 300 мг на 1 кг) в целях обеспечения безопасности белоксодержащей пищи.

     Неблагоприятные погодные условия при созревании зерна, поражение его вредителями  и микрофлорой, пониженная или повышенная температура при хранении и переработке  сырья и полуфабрикатов, механические, физические и химические факторы (перемешивание, гомогенизация, замес, инфракрасное облучение, ультразвук, действие солей, диоксида углерода, газообразных азота и этилена  и т. д.) усиливают структурные  перестройки белков, которые могут  разрушать природные белково-липидные взаимодействия. Высвобождающиеся липиды, подвергаясь окислительной порче, способны инициировать образование ковалентных меж- и внутримолекулярных связей в белках и новых полимерах:

R –  H + LO˙22; → R˙ + L02H; R˙ + R˙ → R-R; 

R –  R + LO˙2 → R – R˙ + L02H; R – R˙ + R˙ → R-R-R и т. д.

Остатки тирозина в присутствии гидропероксидов (LO2H) могут превращаться в сульфоксиды и сульфоны, остатки цистеина – в сульфиновые, сульфоновые кислоты, а остатки триптофана – в гидрокси-β-индолилаланин и N-формилкинуренин. Все реакции окисления связаны с потерей незаменимых аминокислот. Окислительная порча белков особенно опасна при переработке масличного и жирового сырья. Торможение реакций можно достигать добавлением оксидантов, ферментных препаратов или повышением активности собственных ферментов сырья в целях вывода липидов из взаимодействия с белками.

     Использование новых и традиционных технологических  процессов без глубокого изучения влияния их на молекулярные основы структуры белков, с одной стороны, опасно для здоровья людей, а с  другой – неэффективно с точки  зрения обеспечения качества пищевых  продуктов. Примером может служить  научно обоснованное применение аскорбиновой кислоты для улучшения качества хлеба.

     По  современным представлениям, аскорбиновая кислота, окисляясь кислородом воздуха  в дегидроаскорбиновую кислоту, окисляет глютатион (Г-SH), превращая его в окисленную форму (Г-S-S-Г). Это предохраняет глютатион от участия в сульфгидрильно-дисульфидном взаимодействии с белками клейковины во время образования теста. Сульфгидрильные группы пшеничного белка взаимодействуют друг с другом с образованием дисульфидносвязанных белковых цепей и качество изделий улучшается.

     Наряду  с окислительными процессами в технологических  процессах, предусматривающих механические или физические воздействия на белковые вещества сырья (замес, гомогенизация, ультразвук и т.д.), протекают и  другие превращения, характер которых  зависит от природы, степени и  способа этих воздействий. На начальных  стадиях замеса хлебного теста и  при измельчении семян зерна  наблюдается тепловая агрегация  белков, при усиленной механической обработке теста возможна деструкция последних с разрывом дисульфидных и даже пептидных связей.

Агрегирующая  и комплексообразующая способность  белков пшеницы является одним из важных показателей, обеспечивающих им ведущую роль в формировании клейковины в процессе ее отмывания из муки и тестоведения.

Параметры агрегации белков сильных пшениц, характеризующиеся более "плотной" пространственной упаковкой структуры, выше по сравнению со слабыми, имеющими более "рыхлую" организацию молекул. Процесс образования белковых агрегатов по ходу технологического процесса приготовления изделий из муки интенсивнее у крепкой клейковины, чем у слабой.  

 

     Константы агрегации уксуснорастворимых белков, экстрагированных из предварительно отмытой клейковины и теста, выше, чем белков, выделенных из муки. Следовательно, при гидратации белков в ходе технологического процесса и, в частности, при замесе теста или отмывании клейковины водой происходят внутри- и(или) межмолекулярные превращения, связанные с изменением структуры молекул, приводящим к снижению агрегирующих свойств последних.

Информация о работе Контрольная работа по химическим основам технологии пищевых производств