Электронная микроскопия

Автор работы: Пользователь скрыл имя, 20 Ноября 2011 в 18:49, доклад

Описание

Методы электронной микроскопии завоевали такую популярность, что в настоящее время невозможно представить себе лабораторию, занимающуюся исследованием материалов, их не применяющую. Первые успехи электронной микроскопии следует отнести к 30-м годам, когда с ее помощью была выявлена структура ряда органических материалов и биологических объектов. В исследованиях неорганических материалов, в особенности металлических сплавов, позиции электронной микроскопии укрепились с появлением микроскопов с высоким напряжением (100 кВ и выше) и еще в большей мере благодаря совершенствованию техники получения объектов, позволившей работать непосредственно с материалом, а не со слепками-репликами. Именно так называемой просвечивающей электронной микроскопии обязана своим появлением и постоянным развитием теория дислокаций – механизма пластической деформации материалов. Прочные позиции занимает электронная микроскопия и в ряде других разделов материаловедения.

Работа состоит из  1 файл

ВВЕДЕНИЕ.doc

— 423.00 Кб (Скачать документ)

     Изменение увеличения осуществляется регулировкой тока промежуточной линзы.

     Еще один фактор, способствующий получению большего увеличения, – изменение оптической силы линзы. Чтобы увеличить оптическую силу линзы, в цилиндрический канал электромагнитной катушки вставляют специальные так называемые "полюсные наконечники". Они изготовляются из мягкого железа или сплавов е большой магнитной проницаемостью и позволяют сконцентрировать магнитное поле в небольшом объеме. В некоторых моделях микроскопов предусмотрена возможность смены полюсных наконечников, таким образом добиваются дополнительного увеличения изображения объекта.

     На  конечном экране исследователь видит  увеличенное изображение объекта. Различные участки объекта по-разному  рассеивают падающие на них электроны. После объективной линзы (как  уже указывалось выше) будут фокусироваться только электроны, которые при прохождении объекта отклоняются на малые углы. Эти же электроны фокусируются промежуточной и проекционной линзами на экране для конечного изображения. На экране соответствующие детали объекта будут светлые. В том случае, когда электроны при прохождении участков объекта отклоняются на большие углы, они задерживаются апертурной диафрагмой, расположенной в объективной линзе, и соответствующие участки изображения будут на экране темными.

     Изображение становится видимым на флюоресцентном экране (светящимся под действием падающих на него электронов). Фотографируют его либо на фотопластинку, либо на фотопленку, которые расположены на несколько сантиметров ниже экрана. Хотя пластинка помещается ниже экрана, благодаря тому что электронные линзы имеют довольно большую глубину резкости и фокуса, четкость изображения объекта на фотопластинке не ухудшается. Смена пластинки – через герметичный люк. Иногда применяют фотомагазины (от 12 до 24 пластинок), которые устанавливают также через шлюзовые камеры, что позволяет избежать разгерметизации всего микроскопа.

     Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность электронного микроскопа определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимущество электронного микроскопа в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение электронного микроскопа равно 50 – 100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения около 0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой около 2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию.

     Для достижения разрешения по точкам лучше  чем 0,5 нм необходимо поддерживать прибор в отличном состоянии и, кроме того, использовать микроскоп, который специально предназначен для работ, связанных с получением высокого разрешения. Нестабильность тока объективной линзы и вибрации объектного столика следует свести к минимуму. Исследователь должен быть уверен, что в полюсном наконечнике объектива отсутствуют остатки объектов, оставшихся от предыдущих исследований. Диафрагмы должны быть чистыми. Микроскоп следует устанавливать в месте, удовлетворительном с точки зрения вибраций, посторонних магнитных полей, влажности, температуры и пыли. Постоянная сферической аберрации должна быть меньше 2 мм. Однако самыми важными факторами при работе с высоким разрешением являются стабильность электрических параметров и надежность микроскопа. Скорость загрязнения объекта должна быть меньше, чем 0,1 нм/мин, и это особенно важно для работы с высоким разрешением в темном поле.

     Температурный дрейф должен быть минимальным. Для  того чтобы свести к минимуму загрязнение  и максимально увеличить стабильность высокого напряжения, необходим вакуум причем его следует измерять в конце линии откачки. Внутренность микроскопа, в особенности объем камеры электронной пушки, должны быть скрупулезно чистыми.

     Удобными  объектами для проверки микроскопа являются тест-объекты с маленькими частичками частично графитизированного угля, в которых видны плоскости кристаллической решетки. Во многих лабораториях такой образец всегда держат под рукой, чтобы проверять состояние микроскопа, и каждый день, прежде чем начать работу с высоким разрешением, на этом образце получают четкие изображения системы плоскостей с межплоскостным расстоянием 0,34 нм, используя держатель образца без наклона. Такая практика проверки прибора настоятельно рекомендуется. Больших затрат времени и энергии требует поддержание микроскопа в наилучшем состоянии. Не следует планировать исследования, требующие высокого разрешения, до тех пор пока не обеспечено поддержание состояния прибора на соответствующем уровне, и, что еще более важно, до тех пор пока микроскопист не вполне уверен, что результаты, полученные с помощью изображений высокого разрешения, оправдают затраченные время и усилия.

     Современные электронные микроскопы оборудуются  рядом приспособлений. Весьма важна  приставка для изменения наклона  образца во время наблюдения (гониометрическое устройство). Так как контраст изображения получается главным образом за счет дифракции электронов, то даже малые наклоны образца могут существенно влиять на него. Гониометрическое устройство имеет две взаимно перпендикулярные оси наклона, лежащие в плоскости образца, и приспособленные для его вращения на 360°. При наклоне устройство обеспечивает неизменность положения объекта относительно оси микроскопа. Гониометрическое устройство также необходимо при получении стереоснимков для изучения рельефа поверхности излома кристаллических образцов, рельефа костных тканей, биологических молекул и т. п.

     Стереоскопическая пара получается съемкой в электронном  микроскопе одного и того же места  объекта в двух положениях, когда  он повернут на небольшие углы к  оси объектива (обычно ±5°).

     Интересная  информация об изменении структуры  объектов может быть получена при  непрерывном наблюдении за нагревом объекта. С помощью приставки  удается изучить поверхностное  окисление, процесс разупорядочения, фазовые превращения в многокомпонентных сплавах, термические превращения некоторых биологических препаратов, провести полный цикл термической обработки (отжиг, закалка, отпуск), причем с контролируемыми высокими скоростями нагрева и охлаждения. Вначале были разработаны устройства, которые герметично присоединялись к камере объектов. Специальным механизмом объект извлекался из колонны, термообрабатывался, а затем вновь помещался в камеру объектов. Преимущество метода – отсутствие загрязнения колонны и возможность длительной термообработки.

     В современных электронных микроскопах  имеются устройства для нагревания объекта непосредственно в колонне. Часть объектодержателя окружена микропечью. Нагрев вольфрамовой спирали микропечек осуществляется постоянным током от небольшого источника. Температура объекта изменяется при изменении тока нагревателя и определяется по градуировочной кривой. В устройстве сохраняется высокое разрешение при нагреве вплоть до 1100°С – порядка 30 Å.

     В последнее время разработаны  устройства, позволяющие нагревать объект электронным пучком самого микроскопа. Объект располагается на тонком вольфрамовом диске. Диск нагревается расфокусированным электронным лучом, небольшая часть которого проходит через отверстие в диске и создает изображение объекта. Температуру диска можно менять в широких пределах, изменяя его толщину и диаметр электронного луча.

     Есть  в микроскопе и столик для наблюдения объектов в процессе охлаждения до –140° С. Охлаждение – жидким азотом, который заливается в сосуд Дьюара, соединенный со столиком специальным хладопроводом. В этом устройстве удобно исследовать некоторые биологические и органические объекты, которые без охлаждения под воздействием электронного луча разрушаются.

     С помощью приставки для растяжения объекта можно исследовать движение дефектов в металлах, процесс зарождения и развития трещины в объекте. Создано несколько типов подобных устройств. В одних использовано механическое нагружение перемещением захватов, в которых крепится объект, или передвижением нажимного стержня, в других – нагрев биметаллических пластин. Образец приклеивается или крепится захватами к биметаллическим пластинам, которые расходятся в стороны, когда их нагревают. Устройство позволяет деформировать образец на 20% и создавать усилие в 80 г.

     Самой важной приставкой электронного микроскопа можно считать микродифракционное устройство для электронографических исследований какого-либо определенного участка объекта, представляющего особый интерес. Причем микродифракционную картину на современных микроскопах получают без переделки прибора. Дифракционная картина состоит из серии либо колец, либо пятен. Если в объекте многие плоскости ориентированы благоприятным для дифракции образом, то изображение состоит из сфокусированных пятен. Если электронный луч попадает сразу на несколько зерен беспорядочно ориентированного поликристалла, дифракция создается многочисленными плоскостями, образуется картина из дифракционных колец. По местоположению колец или пятен можно установить структуру вещества (например, нитрид или карбид), его химический состав, ориентацию кристаллографических плоскостей и расстояние между ними.  

     2.1 Источники электронов

     Обычно  используются четыре типа источников электронов: вольфрамовые V-образные катоды, вольфрамовые точечные (острийные) катоды, источники из гексаборида лантана и автоэлектронные источники. В данной главе кратко рассматриваются преимущества каждого вида источника электронов для просвечивающей электронной микроскопии высокого разрешения и их характеристики. К источникам электронов, используемым в электронной микроскопии высокого разрешения, предъявляются следующие основные требования:

     1. Высокая яркость (плотность тока  на единицу телесного угла). Выполнение  этого требования существенно  для экспериментов при получении  изображений высокого разрешения  с фазовым контрастом, когда необходимо сочетать малую апертуру освещения с достаточной величиной плотности тока, что дает возможность точно фокусировать изображение при большом увеличении.

     2. Высокая эффективность использования  электронов (отношение яркости к  полной величине тока первичного пучка электронов), которая достигается за счет малого размера источника. Уменьшение освещаемой области образца снижает его нагревание и тепловой дрейф в процессе экспозиции.

     3. Большое время жизни при имеющемся  вакууме.

     4. Стабильная эмиссия при длительной (до минуты) экспозиции, характерной в микроскопии высокого разрешения.

     Идеальной системой освещения для обычного просвечивающего микроскопа высокого разрешения была бы система, позволяющая  оператору независимо контролировать размер освещаемой области образца, интенсивность освещения и когерентность пучка. Такие возможности достигаются только при работе с автоэлектронным источником. Однако для большинства лабораторий использование вольфрамового точечного катода является наилучшим компромиссом, приемлемым как по стоимости, так и по рабочим характеристикам для просвечивающей микроскопии высокого разрешения. В настоящее время рассматривается также возможность использования источников из гексаборида лантана. Перспективным является также катод, нагреваемый лучом лазера, яркость которого, как сообщается, в 3000 раз превосходит яркость V-образного катода при эффективном диаметре источника порядка 10 нм. Эти катоды работают при умеренном вакууме (10-4 Тор). 

     2.2.  Система освещения

        

     Образец

     Рисунок 6 – Осветительная система современного электронного микроскопа

     Система имеет две конденсорные линзы  С1 (сильная линза) и С2 (слабая линза). F – катод; W – цилиндр Вепельта; S – мнимый источник электронов, S' и S" – его изображения; СА2 – вторая конденсорная диафрагма. Расстояния U1, U2, V1, V2 являются электронно-оптическими параметрами, тогда как расстояния D1, D2, D3 легко измеряются в колонне микроскопа. [4].

     На  рис. 6 представлены две конденсорные линзы, входящие в систему освещения  электронного микроскопа. Обычно можно осуществить независимое изменение фокусного расстояния этих линз (С1 и С2). Возбуждение первой конденсорной линзы изменяют с помощью регулировочной ручки, называемой иногда "размер пятна". Обычно выбирается такое возбуждение, при котором плоскости S, S' и поверхность образца являются сопряженными, т. е. чтобы сфокусированное изображение источника формировалось на образце (сфокусированное освещение).

     Для V-образного катода размер источника  приблизительно равен 30 мкм. Для предотвращения нежелательного нагрева и радиационного повреждения образца на нем нужно сформировать уменьшенное изображение источника. Рабочее расстояние D3 также должно быть достаточно большим, чтобы имелась возможность перемещения объектодержателя при смене образца. При использовании одной конденсорной линзы трудно удовлетворить этим противоречивым требованиям – малое увеличение при большом расстоянии D3 – так как для этого необходимо, чтобы расстояние D1 было чрезмерно большим. Поэтому обычно используется сильная первая конденсорная линза С1, служащая для уменьшения изображения источника в 5 – 100 раз, а следующая за первой вторая слабая линза С2 с увеличением около 3 обеспечивает большое рабочее расстояние 

     2.3 Коррекция астигматизма

     Регулировка стигматора объективной линзы весьма критична для обеспечения высокого разрешения. В некоторых приборах астигматизм регулируется как по направлению, так и по силе, в то время как в других предусмотрена регулировка силы астигматизма в двух фиксированных ортогональных направлениях. Прежде всего следует грубо скорректировать астигматизм с помощью стигматора до получения симметричности кольца Френеля. При работе с высоким разрешением необходимо возможно более точно скорректировать астигматизм, что можно сделать по изображению структуры тонкой аморфной угольной пленки при большом увеличении. Для тщательной корректировки астигматизма на деталях такого изображения размером 0,3 нм необходимы увеличение микроскопа по крайней мере 400 000-кратное и оптический бинокуляр х10. С помощью ручек изменения фокуса и стигма-тора добейтесь минимального контраста, что достигается при использовании ручек наиболее тонкой регулировки. При недофокусировке объектива в несколько десятков нанометров должна быть видна однородная зернистая структура угольной пленки без анизатропии в каком-либо преимущественном направлении. Это – трудная процедура, требующая значительных навыков. Оптическая дифрактограмма позволяет наиболее быстро проверить правильность коррекции астигматизма, и ее использование особенно важно при освоении процедуры корректировки астигматизма. Важны следующие моменты:

Информация о работе Электронная микроскопия