Эффект пельтье

Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 12:16, курсовая работа

Описание

Научная мысль обладает способностью опережать время. Открытия, сделанные ученными, позволяют будущим поколениям, руководствуясь ими, создавать улучшающие жизнь человека приборы и приспособления; находить новые способы защиты его здоровья и благополучия. Череда научных открытий в «великое десятилетие» начала девятнадцатого века заложила предпосылки для овладевания термоэлектричеством, безусловно, перспективнейшим направлением энергетики будущего. И явление, открытое в 1834 году часовщиком Жаном-Шарлем Пельтье и названное позже «Эффектом Пельтье», не стало исключением

Содержание

ВВЕДЕНИЕ………………………………………………………………......3
1. ЭФФЕКТ ПЕЛЬТЬЕ………………………………………………………4
1.1. История открытия……………………………………………………….4
1.2. Теоретическое обоснование эффекта Пельтье………………………...6
2. ПРИМЕНЕНИЕ ЭФФЕКТА ПЕЛЬТЬЕ………………………………...14
2.1. Модули Пельтье………………………………………………………..14
2.2.Особенности эксплуатации модулей Пельтье……………………......19
2.3. Полупроводниковые холодильники Пельтье………………………..23
2.4. Применение эффекта Пельтье………………………………………..27
ЗАКЛЮЧЕНИЕ……………………………………………………………..30
СПИСОК ЛИТЕРАТУРЫ………………………………………………….32

Работа состоит из  1 файл

курсач.doc

— 286.50 Кб (Скачать документ)

Важнейшими являются:

    • температура окружающей среды (в данном случае температура воздуха внутри корпуса);
    • температура охлаждаемого объекта;
    • влажность воздуха.

Чем теплее воздух внутри корпуса и чем больше влажность, тем вероятнее произойдет конденсация  влаги и последующий выход  из строя электронных элементов компьютера. Ниже представлена таблица, иллюстрирующая зависимость температуру конденсации влаги на охлаждаемом объекте в зависимости от влажности и температуры окружающего воздуха. Используя эту таблицу, можно легко установить, существует ли опасность конденсации влаги или нет. Например, если внешняя температура 25°C, а влажность 65%, то конденсация влаги на охлаждаемом объекте происходит при температуре его поверхности ниже 18°C.

                                                                                                      Таблица 2.

Зависимость температуры конденсации влаги от влажности и            температуры окружающей среды.

                                                                                                                    

 

                                        Влажность, %

Температура окружающей среды, °C

30

35

40

45

50

55

60

65

70

30

11

13

15

17

18

20

21

23

24

29

10

12

14

16

18

19

20

22

23

28

9

11

13

15

17

18

20

21

22

27

8

10

12

14

16

17

19

20

21

26

7

9

11

13

15

16

18

19

20

25

6

9

11

12

14

15

17

18

19

24

5

8

10

11

13

14

16

17

18

23

5

7

9

10

12

14

15

16

17

22

4

6

8

10

11

13

14

15

16

21

3

5

7

9

10

12

13

14

15

20

2

4

6

8

9

11

12

13

14


 

Кроме указанных особенностей, необходимо учитывать и ряд специфических  обстоятельств, связанных с использованием термоэлектрических модулей Пельтье в составе кулеров, применяемых для охлаждения высокопроизводительных центральных процессоров мощных компьютеров.

 

2.3. Полупроводниковые холодильники Пельтье

 

Работа современных  высокопроизводительных электронных компонентов, составляющих основу компьютеров, сопровождается значительным тепловыделением, особенно при эксплуатации их в форсированных режимах разгона (overclocking). Эффективная работа таких компонентов требует адекватных средств охлаждения, обеспечивающих необходимые температурные режимы их работы. Как правило, такими средствами поддержки оптимальных температурных режимов являются кулеры, основой которых являются традиционные радиаторы и вентиляторы.

Надежность и производительность таких средств непрерывно повышаются за счет совершенствования их конструкции, использования новейших технологий и применения в их составе разнообразных датчиков и средств контроля. Это позволяет интегрировать подобные средства в состав компьютерных систем, обеспечивая диагностику и управление их работой с целью достижения наибольшей эффективности при обеспечении оптимальных температурных режимов эксплуатации компьютерных элементов, что повышает надежность и удлиняет сроки их безаварийной работы.

Параметры традиционных кулеров непрерывно улучшаются, тем не менее, в последнее время на компьютерном рынке появились и вскоре стали популярными такие специфические средства охлаждения электронных элементов как полупроводниковые холодильники Пельтье (хотя часто применяется слово кулер, но правильным термином в случае элементов Пельтье является именно холодильник).

Холодильники Пельтье, содержащие специальные полупроводниковые  термоэлектрические модули, работа которых  основана на эффекте Пельтье, являются чрезвычайно перспективными устройствами охлаждения. Подобные средства уже много лет успешно применяются в различных областях науки и техники.

В шестидесятых и семидесятых  годах отечественной промышленностью  предпринимались неоднократные  попытки выпуска бытовых малогабаритных холодильников, работа которых была основана на эффекте Пельтье. Однако несовершенство существовавших технологий, низкие значения коэффициента полезного действия и высокие цены не позволили в те времена подобным устройствам покинуть научно-исследовательские лаборатории и испытательные стенды.

Но эффект Пельтье  и термоэлектрические модули не остались уделом только ученых. В процессе совершенствования  технологий многие негативные явления  удалось существенно ослабить. В  результате этих усилий были созданы высокоэффективные и надежные полупроводниковые модули.

В последние годы данные модули, работа которых основана на эффекте Пельтье, стали активно  использовать для охлаждения разнообразных  электронных компонентов компьютеров. Их, в частности, стали применять для охлаждения современных мощных процессоров, работа которых сопровождается высоким уровнем тепловыделения.

Благодаря своим уникальным тепловым и эксплуатационным свойствам  устройства, созданные на основе термоэлектрических модулей - модулей Пельтье, позволяют достичь необходимого уровня охлаждения компьютерных элементов без особых технических трудностей и финансовых затрат. Как кулеры электронных компонентов, данные средства поддержки необходимых температурных режимов их эксплуатации являются чрезвычайно перспективными. Они компактны, удобны, надежны и обладают очень высокой эффективностью работы.

Особенно большой интерес  полупроводниковые холодильники представляют в качестве средств, обеспечивающих интенсивное охлаждение в компьютерных системах, элементы которых, установлены и эксплуатируются в жестких форсированных режимах. Использование таких режимов - разгона (overclocking) часто обеспечивает значительный прирост производительности применяемых электронных компонентов, а, следовательно, как правило, и всей системы компьютера. Однако работа компьютерных компонентов в подобных режимах отличается значительным тепловыделением и нередко находится на пределе возможностей компьютерных архитектур, а также существующих и используемых микроэлектронных технологий. Такими компьютерными компонентами, работа которых сопровождается высоким тепловыделением, являются не только высокопроизводительные процессоры, но и элементы современных высокопроизводительных видеоадаптеров, а в некоторых случаях и микросхемы модулей памяти. Подобные мощные элементы требуют для своей корректной работы интенсивного охлаждения даже в штатных режимах и тем более в режимах разгона.

Архитектура современных  процессоров (рис. 8) и некоторые системные программы предусматривают изменение энергопотребления в зависимости от загрузки процессоров. Это позволяет оптимизировать их энергопотребление. Кстати, это предусмотрено и стандартами энергосбережения, поддерживаемыми некоторыми функциями, встроенными в аппаратно-программное обеспечение современных компьютеров. В обычных условиях оптимизация работы процессора и его энергопотребления благотворно сказывается как на тепловом режиме самого процессора, так и общем тепловом балансе. Однако следует отметить, что режимы с периодическим изменением энергопотребления могут плохо сочетаться со средствами охлаждения процессоров, использующих модули Пельтье. Это связано с тем, что существующие холодильники Пельтье, как правило, рассчитаны на непрерывную работу. В связи с этим, простейшие холодильники Пельтье, не обладающие средствами контроля, не рекомендуется использовать вместе с охлаждающими программами.

 

        

       Рисунок 8. Процессор с модулем Пельтье

 

В случае перехода процессора в режим пониженного энергопотребления  и соответственно тепловыделения возможно значительное снижение температуры  корпуса и кристалла процессора. Переохлаждение ядра процессора может  вызвать в некоторых случаях  временное прекращение его работоспособности, и как результат, стойкое зависание компьютера.

Некоторые проблемы могут  возникнуть и в результате работы ряда встроенных функций, например, тех, которые осуществляют управление вентиляторами  кулеров. В частности, режимы управления энергопотреблением процессора в некоторых компьютерных системах предусматривают изменение скорости вращения охлаждающих вентиляторов через встроенные аппаратные средства материнской платы. В обычных условиях это значительно улучшает тепловой режим процессора компьютера. Однако в случае использования простейших холодильников Пельтье уменьшение скорости вращения может привести к ухудшению теплового режима с фатальным результатом для процессора уже вследствие его перегрева работающим модулем Пельтье, который кроме выполнения функций теплового насоса, является мощным источником дополнительного тепла.

Ввиду этого необходимо отметить, что, как и в случае центральных  процессоров компьютеров, холодильники Пельтье могут быть хорошей альтернативой  традиционным средствам охлаждения видеочипсетов, используемых в составе современных высокопроизводительных видеоадаптеров. Работа таких видеочипсетов сопровождается значительным тепловыделением и обычно не подвержена резким изменениям режимов их функционирования.

Для того чтобы исключить  проблемы с режимами изменяемого  энергопотребления, вызывающих конденсацию  влаги из воздуха и возможное  переохлаждение, а в некоторых  случаях даже перегрев защищаемых элементов, таких как процессоры компьютеров, следует отказаться от использования подобных режимов и ряда встроенных функций. Однако как альтернативу можно использовать системы охлаждения, предусматривающие интеллектуальные средства управления холодильниками Пельтье. Такие средства могут контролировать не только работу вентиляторов, но и изменять режимы работы самих термоэлектрических модулей, используемых в составе активных кулеров.

 

2.4 Применение эффекта Пельтье

 

Элементы Пельтье применяются  в ситуациях, когда необходимо охлаждение с небольшой разницей температур, или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров и, кроме того, необходимая мощность охлаждения невелика.

Кроме того элементы Пельтье  применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приемников излучения в инфракрасных сенсорах.

Также элементы Пельтье  часто применяются:

  1. для охлаждения и термостатирования диодных лазеров, чтобы стабилизировать длину волны излучения;
  2. в компьютерной технике;
  3. в радиоэлектрических устройствах;
  4. в медицинском и фармацевтическом оборудовании;
  5. в бытовой технике;
  6. в климатическом оборудовании;
  7. в термостатах;
  8. в оптической аппаратуре;
  9. для управления процессом кристаллизации;
  10. как подогрев в целях отопления;
  11. для охлаждения напитков;
  12. в лабораторных и научных приборах;
  13. в ледогенераторах;
  14. в кондиционерах;
  15. для получения электроэнергии;
  16. в электронных счетчиках расхода воды.

Конечно, охлаждающие  устройства Пельтье вряд ли подходят для массового использования. Они  достаточно дорогие и требуют правильного режима эксплуатации. Сегодня это, скорее, инструмент для любителей разгона процессоров. Однако в случае необходимости сильного охлаждения процессоров кулеры Пельтье являются наиболее эффективными устройствами.

Появились сообщения  об экспериментах по встраиванию миниатюрных модулей Пельтье непосредственно в микросхемы процессоров для охлаждения их наиболее критичных структур. Такое решение способствует лучшему охлаждению за счет снижения теплового сопротивления и позволяет значительно повысить рабочую частоту и производительность процессоров.

Работы в направлении  совершенствования систем обеспечения  оптимальных температурных режимов  электронных элементов ведутся  многими исследовательскими лабораториями. И системы охлаждения, предусматривающие использование термоэлектрических модулей Пельтье, считаются чрезвычайно перспективными.

 

ЗАКЛЮЧЕНИЕ

После детального изучения эффекта Пельтье можно выделить достоинства и недостатки  устройств, работающих на этом принципе.

Информация о работе Эффект пельтье