Белаз ТО и ТР

Автор работы: Пользователь скрыл имя, 14 Марта 2012 в 19:15, курсовая работа

Описание

Целью данной работы является разработка производственного подразделения АТП, на котором будет осуществляться технологический процесс ТО и ТР автомобилей БелАЗ.

Содержание

Введение
1 Общая часть
1.1 Развитие карьерного транспорта и характеристика АТП для технологического транспорта
1.2 Техническая характеристика карьерных автомобилей и технической системы по заданию
1.3 Характеристика перевозимого груза из карьера и погрузо-разгрузочных механизмов
1.4 Обоснование исходных данных для проектирования производственных подразделений АТП технологического транспорта
1.5 Характеристика проектируемого подразделения
2 Технологическая часть
2.1 Расчет годовой производственной программы АТП по ТО автомобилей
2.2 Определение трудовых затрат на ТО и ремонт автомобилей по АТП
2.3 Определение вспомогательного объема работ
2.4 Определение годового объема работ по проектируемому подразделению
2.5 Технология работ, выполняемых на проектируемом подразделении
3 Организационная часть
3.1 Схема технологического процесса на проектируемом подразделении
3.2 Расчет числа рабочих на проектируемом подразделении
3.3 Расчет числа постов или определение рабочих мест на проектируемом подразделении.
3.4 Подбор технологического оборудования и оснастки
3.5 Расчет площади проектируемого подразделения и нормирование геометрических параметров производственного помещения
3.6 Распределение рабочих по рабочим местам и квалификации
3.7 Мероприятия по НОТ
4 Мероприятия по технике безопасности и охране труда
4.1 Вредные факторы и санитарные требования по проекту
4.2 Правила техники безопасности на проектируемом подразделении
4.3 Противопожарные мероприятия
4.4 Мероприятия по охране окружающей среды
5 Конструкторская часть
5.1 Обоснование внедрения приспособления, стенда
5.2 Устройство и правила эксплуатации
Заключение
Список используемой литературы
Приложение А - Планировка производственного подразделения
Приложение Б - Общий вид или сборочный чертеж приспособления

Работа состоит из  1 файл

Курсовая Белаз.doc

— 318.00 Кб (Скачать документ)

Производительность автосамосвалов в 2002 г. превысила уровень 1990 г. более чем на 30% (при общем повышении производительности на 13,3%), локомотивов – на 35,5%. Объемы перевозок из забоев автомобильным транспортом снизились в 1994 на 4,4% по отношению к 1990 г. Эта тенденция сохранялась до 2001 г. В 2002 г. объемы перевозок автомобильным транспортом составили 62,4% (в 1990 г. – 63,9%). Удельный вес перевозок железнодорожным транспортом в 1994 и 1998 гг. существенно вырос, а в 2002 г. несколько снизился (до 35,1%), оставаясь заметно выше, чем в 1990 г. (28,8%). При этом общие объемы перевозок на крупнейших ГОКах в 2002 г. достигли уровня 1990 г. Увеличение доли железнодорожного транспорта объясняется реализацией резервов по увеличению глубины ввода и числа прямых заездов железнодорожного транспорта в забои. Так, на Качканарском ГОКе в этот период с применением железнодорожного транспорта прямыми заездами была вскрыта т.н. Южная залежь.

Известно, что железнодорожный транспорт является весьма капиталоемким. При этом эксплуатационные расходы на него существенно ниже, чем на другие виды карьерного транспорта. И если инфраструктура железнодорожного транспорта на предприятии сформирована, а для увеличения глубины его ввода на нижележащие горизонты не требуется существенного увеличения парка подвижного состава и единовременных капитальных вложений, то в этих условиях другие виды транспорта по сравнению с железнодорожным неконкурентоспособны. Достаточно сказать, что себестоимость перевозок горной массы автотранспортом по сравнению с железнодорожным, например, в 1990 г. была выше в среднем в 5,2 раза. К 2000 г. это соотношение удалось снизить до 3,9 раза.

Наибольшие объемы перевозок горной массы из забоев железнодорожным транспортом в 2002 г. были достигнуты на Лебединском, Михайловском и Качканарском ГОКах – соответственно 69,1, 60,9, 50,3 млн т. Максимальные объемы перевозок автомобильным транспортом были реализованы на Костомукшском, Михайловском и Оленегорском ГОКах – соответственно 61,4, 59,0, 45,7 млн т. Добыча железной руды в России с применением конвейерного транспорта осуществлялась на трех ГОКах – Оленегорском, Стойленском и Ковдорском. Максимальные объемы перевозок горной массы были достигнуты в 1990 г. (39,2 млн т). В 1994 г. объемы перевозок снизились на 30,1% – до 27,4 млн т, при этом их доля в общих объемах несколько возросла. Существенный рост объемов произошел к 1999 г. За это время объемы перевозок горной массы с использованием конвейерного транспорта выросли на 8,3 млн т и удельный вес в целом по железорудным карьерам России возрос до 8,2% по горной массе и до 17,7% – по руде.

Карьерный автотранспорт

Остановимся подробнее на тенденциях развития технического прогресса и совершенствования основных видов технологического карьерного транспорта на современном этапе.

Основным видом технологического транспорта при добыче полезных ископаемых открытым способом остается автомобильный. Он используется для перевозки примерно 80% всей горной массы во всем мире, в т.ч. в США и Канаде – 85%, в Южной Америке – 85%, в Австралии – почти 100%, в Южной Африке – более 90%. В России и странах СНГ удельный вес карьерного автотранспорта с учетом всех подотраслей горно-добывающей промышленности приблизился к 75% и в ближайшей перспективе будет расти за счет расширения открытого способа добычи угля [3]. Проведенный специалистами СПГГИ (ТУ) макроуровневый анализ развития открытых горных работ в России позволил определить перспективные ориентировочные объемы перевозок горной массы по основным подотраслям горно-добывающей промышленности. Согласно этим данным объемы перевозок автотранспортом в угольной подотрасли возрастут с 399 млн т в 2000 г. до 481 млн т в 2005 г., 577 млн т в 2010 и 636 млн т в 2015 г. При этом объемы в железорудной подотрасли и цветной металлургии останутся постоянными и составят соответственно 478 млн т и 518 млн т.

Считается, что «революционный период» в создании большегрузных самосвалов в целом закончился. При этом основные компоновочные схемы отработаны, принципиальные конструктивно-технологические решения по основным узлам практически одинаковы для моделей, выпускаемых различными фирмами. Мировое производство карьерных автосамосвалов идет по эволюционному пути, основными чертами которого являются следующие:

дифференциация типоразмерного ряда по грузоподъемности самосвалов;

создание бортовых систем управления безопасностью и снижением энергозатрат, а также обеспечивающих получение информации о параметрах работы узлов и систем самосвала, перевозимой горной массе и др.;

повышение ресурса базовых конструкций;

создание комфортных условий для водителя;

обеспечение экологической безопасности транспортного процесса.

Некоторые специалисты считают, что одним из путей дальнейшего развития, повышения производительности и эффективности карьерного автомобильного транспорта является разработка и создание специализированного подвижного состава, удовлетворяющего условиям эксплуатации в глубоких карьерах, в частности, средств сборочного автотранспорта [4]. Другие полагают, что создание таких моделей на современном этапе развития открытых горных работ не вызвано объективной необходимостью и значительно снизит область их применения [3]. Это столкновение мнений – отражение извечного спора об универсализации и специализации средств карьерного транспорта. Представляется, что решение о создании специализированных моделей, тем более об их серийном производстве должно быть взвешенным и всесторонне обоснованным.

Необходимость гибкого подхода к формированию типоразмерного ряда, разработанного БелАЗом еще в 70-х годах прошлого века, вызвана тем, что он оказался слишком дискретным. Расширение типоразмерного ряда связано с появлением на рынке стран СНГ автосамосвалов производства зарубежных фирм с грузоподъемностью 90, 136 и 154 т. В условиях жесткой конкуренции это потребовало разработки соответствующих моделей самосвалов в ПО «БелАЗ», чтобы в большей степени удовлетворять требованиям горнодобывающих предприятий. Следует отметить, что ПО «БелАЗ» за сравнительно короткий период разработаны новые модели самосвалов БелАЗ-7547, БелАЗ-7528, БелАЗ-7555, БелАЗ-75131 и БелАЗ-75306 и их модификаций грузоподъемностью соответственно 36, 45, 55–65, 130 и 220 т, а также опытные образцы с шарнирно-сочлененной рамой грузоподъемностью 36 и 280 т. На заводе разработан план модернизации, создания и внедрения новой техники на перспективу до 2010 г. При этом осваиваемые производством модели соответствуют мировым тенденциям развития средств карьерного транспорта, в их конструкции используются достижения российских и зарубежных фирм, поставляющих надежные агрегаты, узлы и материалы [5].

Компоновочные схемы современных карьерных самосвалов БелАЗ и ведущих зарубежных фирм практически одинаковы, и если отличаются, то только дизайном оперения, кабины и пр. Более 70% всех карьерных самосвалов выполнены по классической схеме, когда все узлы и системы самосвалов монтируются на жесткой раме. По схеме с шарнирно-сочлененной рамой выпускаются самосвалы либо сравнительно небольшой грузоподъемности (до 40–50 т), либо очень большой – до 300–400 т.

Основной тенденцией развития карьерного автотранспорта следует считать нарастание грузоподъемности, сдерживаемое только мощностью двигателя и несущей способностью применяемых шин. О наличии потребности в автосамосвалах грузоподъемностью 500 т и более свидетельствует, например, объявленный в 2002 г. ведущей медедобывающей компанией Чили «Codelco» конкурс на разработку самосвала грузоподъемностью 560 т и более.

Основными типами трансмиссий, применяемых на карьерных автосамосвалах, являются гидромеханическая (ГМТ) и электромеханическая (ЭМТ). Типы трансмиссий имеют значительные и принципиальные различия в конструктивном исполнении, и можно говорить о традиционной и давней конкуренции между ними. При этом если на карьерных самосвалах грузоподъемностью 30–70 т варианты с применением ГМТ по существу безальтернативны, то для самосвалов большой и особо большой грузоподъемности такой однозначности в использовании ГМТ в приводе нет. Сдерживающими факторами для получения подавляющего преимущества ГМТ являются следующие: низкий ресурс до капремонта узлов трансмиссии по сравнению с ЭМТ и возрастание общих издержек за период эксплуатации самосвала с ГМТ. В то же время при глубине карьеров 500 м и более самосвалы с ГМТ получают неоспоримое преимущество. Начиная с 1994–1995 гг. отмечена тенденция к возрастанию объемов сбыта самосвалов с ГМТ грузоподъемностью 110–220 т. Применение ЭМТ с использованием электродвигателей постоянного тока при создании автосамосвалов грузоподъемностью более 250 т вообще нецелесообразно. Обеспечение дальнейшего роста грузоподъемности карьерных автосамосвалов связывают с использованием приводов на переменном токе: на базе асинхронных, синхронных и индукторных двигателей. Одним из перспективных направлений улучшения основных показателей приводного оборудования является использование вентильного двигателя с системой возбуждения, основанной на постоянных магнитах.

Совсем недавно считалось, что основным фактором, ограничивающим применение современных автосамосвалов с дизель-электрическим приводом в глубоких карьерах, является перегрев тяговых генераторов и электродвигателей мотор-колес [4]. Благодаря значительному прогрессу в совершенствовании тягового привода карьерных самосвалов в последние годы эта проблема полностью решена. Автосамосвалы БелАЗ последних моделей могут работать без перегрева тяговых электродвигателей при высоте подъема горной массы 400 м и более.

Как правило, на современном этапе развития карьерного автотранспорта в качестве силовых установок применяются дизельные двигатели мощностью до 1120 кВт в сочетании с ГМТ – на автосамосвалах грузоподъемностью до 130–160 т, большей мощности – на самосвалах с ЭМТ грузоподъемностью свыше 180 т. Учитывая общие тенденции повышения производительности, можно ожидать некоторое увеличение мощности силовых установок карьерных самосвалов с целью повышения технической скорости большинства машин на подъемах до 18 км/ч.

В настоящее время автомобильный транспорт, при грузоподъемности 220 т и более, может обеспечить практически любую производительность карьера по горной массе – до 200 млн т в год и более [3].

Автомобильный транспорт, как транспорт рабочей зоны карьера, в наибольшей степени подвержен воздействию усложняющихся с глубиной горно-технических условий разработки. Основным ограничением применения автомобильного транспорта на глубоких карьерах по-прежнему остается высокая себестоимость перевозки горной массы. Кроме того, карьерный автомобильный транспорт является основным источником негативного антропогенного воздействия на окружающую среду при открытых горных работах.

С целью расширения области применения автотранспорта в глубоких карьерах, повышения его эффективности не прекращаются поиски новых технологических схем, а также путей его развития и совершенствования. Одним из основных направлений считается электрификация карьерного автотранспорта. Дизель-троллейвозный транспорт обеспечивает повышение производительности при транспортировании горной массы на 10–12% при увеличении скорости движения на подъеме на 20–30%, сокращение расхода дизельного топлива на 50–70%, сокращение общей стоимости энергозатрат, улучшение санитарно-гигиенических условий работы в глубоких карьерах, сокращение эксплуатационных расходов на 15–20%. Со стороны фирм – производителей горно-транспортного оборудования (в частности, фирмы SIEMAG) отмечается рост интереса к созданию наклонных автомобильных подъемников, применение которых позволит существенно снизить нагрузку на собственно карьерный автомобильный транспорт [6]. Объясняется это относительной простотой реализации этой схемы.

При этом нет необходимости создавать принципиально новое оборудование за исключением грузонесущей рельсовой платформы. Рассматриваются два основных варианта исполнения наклонного автомобильного подъемника: со стационарной подъемной машиной и с автономным приводом. Большой недостаток первого – необходимость сооружения подъемного комплекса на нерабочем борту карьера, что связано с большими капитальными затратами и сроками строительства (не менее 4 лет). Впрочем, этот недостаток компенсируется высокой надежностью и производительностью установки. Угол подъема может составлять до 75°. Второй вариант, например, разработанный специалистами Санкт-Петербургского горного института, компенсирует указанные недостатки за счет использования собственной силовой установки для подъема самосвала по наклонному рельсовому пути до пункта разгрузки горной массы. Однако установка в этом случае имеет значительно меньшую производительность и экологичность, большую загруженность узлов и систем автосамосвала.

В ИГД УрО РАН возобновлены исследования вопросов технологической целесообразности и технической возможности создания и эффективности применения карьерных автотранспортных средств с комбинированными энергосиловыми установками (газотурбинный двигатель с аккумулятором энергии, гиротроллейный и др.). Это принципиально новое оборудование позволяет повысить уклоны автодорог до 12%, увеличить скорость движения в грузовом направлении до 25–30 км/час, значительно (в 50–100 раз) сократить загазованность рабочей зоны при одновременном снижении расхода дизельного топлива [7].

В последние годы обострилась необходимость в форсированной подготовке новых горизонтов, а также в новом оборудовании, которое могло бы работать с более высокими темпами понижения горных работ, открывая при этом доступ к новым глубоко залегающим запасам сырья. Не менее важной задачей является продление срока службы карьеров, достигших своей проектной глубины, за счет их углубления с минимальным разносом бортов и объемом горно-капитальных (вскрышных) работ, а также в случае перехода от открытого способа разработки к подземному без остановки добычных работ и существенной потери мощности обогатительных фабрик. Особенно это актуально при разработке месторождений дорогостоящего сырья (например, для алмазодобывающих карьеров). В ИГД УрО РАН по заказу компании «Алроса» ведутся научно-исследовательские работы по созданию специального, прежде всего, транспортного оборудования, отвечающего требованиям и условиям его работы в нижней зоне глубинного карьера и обладающего следующими качествами [8]:

Способностью работать в сложных горно-технических условиях, характеризуемых стесненностью рабочей зоны, обводненностью и другими неблагоприятными факторами.

Возможностью преодоления крутых уклонов (до 25° ) при низком качестве дорог (без дорожного покрытия).

Ремонтопригодностью при наличии соответствующего вспомогательного оборудования и техники для обслуживания и ремонта непосредственно в карьере.

Универсальностью для широкого применения и возможности решения различных задач по вскрытию наклонными и разрезными траншеями, форсированному разносу бортов и др.

Большой единичной мощностью агрегатов.

Железнодорожный карьерный транспорт

В современных условиях на крупных железорудных, угольных и асбестовых карьерах России и стран СНГ одним из основных видов технологического транспорта продолжает оставаться железнодорожный. Многолетний опыт применения электрифицированного железнодорожного транспорта на глубоких карьерах показывает его высокую эффективность при условии использования в предпочтительных горно-технических условиях эксплуатации. Анализ научно-технических и проектных решений позволяет утверждать, что в перспективе как на действующих, так и на вновь разрабатываемых месторождениях большой производительности электрифицированный железнодорожный транспорт будет оставаться одним из главных. Основные преимущества электрифицированного железнодорожного транспорта следующие [9]:

Информация о работе Белаз ТО и ТР