Типы оперативной памяти

Автор работы: Пользователь скрыл имя, 28 Декабря 2010 в 01:17, курсовая работа

Описание

В этой курсовой работе будет рассмотрена оперативная память как с логической, так и с физической точек зрения. В ней будут описаны микросхемы и модули памяти, которые можно установить в компьютере.

Содержание

Введение ……………………………………………..……………………..……..3

1 Типы оперативной памяти…………………………….……………..….…….4

2 Память типа DRAM……………………..………………….……….….…….7 2.1 Режим FPM динамической оперативной памяти…………………………8

3 Память типа SRAM…………………………………………………….……13

4 Разъемы SIMM и DIMM…………………………………………..………….15

5 Увеличение объема памяти………………………………………….……....18

Заключение………………………………………………………………….…....21

Список литературы. ……………………………………………………………..22

Работа состоит из  1 файл

оперативная память.docx

— 312.22 Кб (Скачать документ)

        Микросхемы SRAM не используются для всей системной памяти потому, что по сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее намного ниже, а цена довольно высокая. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластиризованное их размещение не только увеличивает габариты SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM.

         Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности РС. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта память используется процессором при чтении и записи. Во время операции чтения данные в высокоскоростную кэш-память предварительно записываются из оперативний памяти с низким быстродействием, то есть из DRAM. Поэтому именно кэш-память позволяет сократить количество “простоев” и увеличить быстродействие компьютера в целом.

        Эффективность кэш-памяти выражается коэффициентом совпадения, или коэффициентом успеха. Коэффициент совпадения равен отношению количества удачных обращений в кэш к общему количеству обращений. Попадание – это событие состоящее в том, что необходимые процессору данные предварительно считываются в кэш из оперативной памяти; иначе говоря, в случае попадания процессор может считывать данные из кэш-памяти. Неудачным обращением в кэш считается такое, при котором контроллер кэша не предусмотрел потребности в данных, находящихся по указанному абсолютному адресу. В таком случае необходимые данные не были предваритель считаны в кэш-память, поэтому процессор должен отыскать их в более медленной оперативной памяти, а не в быстродействующем кэше.

         Чтобы минимизировать время ожидания при считывании процессором данных из медленной оперативной памяти, в современных персональных компьютерах обычно предусмотрены два типа кэш-памяти: кэш-память первого уровня (L1) и кэш-память второго уровня (L2). Кэш-память первого уровня также называется встроенным, или внутренним кэшем; он непосредственно встроен в процессор и фактически является частью микросхемы процессора.

        Кэш-память второго уровня называется вторичным, или внешним кэшем; он устанавливается вне микросхемы процессора.

         Первоначально кэш-память проектировадлась как асинхронная, то есть не была синхронизирована с шиной процессора и могла работать на другой тактовой частоте. При внедрении набора микросхем системной логики 430FX в начале 1995 года был разработан новый тип синхронной кэш-памяти. Она работает синхронно с шиной процессора, что повышает ее быстродействие и эффективность. В то же время был добавлен режим pipeline burst mode (конвеерный монопольный режим). Он позволил сократить время ожидания за счет уменьшения количества состояний ожидания после первой передачи данных. Использование одного из этих режимов подразумевает наличие другого. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                4 Разъемы SIMM и DIMM 

        В большинстве современных компьютеров вместо отдельных микросхем памяти используются модули SIMM или DIMM, представляющие собой небольшие платы, которые устанавливаются в специальные разъемы на системной плате или плате памяти. Отдельные микросхемы так припаены к плате модуля SIMM или DIMM, что выпаить и заменить их практически невозможно. При появлении неисправности приходится заменять весь модуль. По существу, модуль SIMM или DIMM можно считать одной большой микросхемой.

       В РС-совместимых компьютерах применяются в основном два типа модулей SIMM: 30- контактные (9разрядов) и 72- контактные (36 разрядов). Первые из них меньше по размерам. Микросхемы в модулях SIMM могут устанавливаться как на одной, так и на обеих сторонах платы. Использование 30- контактных модулей неэффективно, поскольку для заполнения одного банка памяти новых 64- разрядных систем требуется восемь таких модулей.

       72-пиновые разъемы SIMM ожидает та же участь, которая несколькими годами раньше постигла их 30-пиновых предшественников: те уже давно не производятся. Им на смену в 1996 г. пришел новый разъем DIMM со 168 контактами, а сейчас появляется еще разъем RIMM. Если на SIMM реализовывались FPM и EDO RAM, то на DIMM - более современная технология SDRAM. В системную плату модули SIMM необходимо было вставлять только попарно, а DIMM можно выбрать по одному, что связано с разрядностью внешней шины данных процессоров Pentium. Такой способ установки предоставляет больше возможностей для варьирования объема оперативной памяти. Модуль памяти DIMM выглядит следующим образом: 

Модуль памяти Registered DIMM

         Первоначально материнские платы поддерживали оба разъема, но уже довольно продолжительное время они комплектуются исключительно разъемами DIMM. Это связано с упомянутой возможностью устанавливать их по одному модулю и тем, что SDRAM обладает большим быстродействием по сравнению с FPM и EDORAM.

         Если для FPM и EDO памяти указывается время чтения первой ячейки в цепочке (время доступа), то для SDRAM указывается время считывания последующих ячеек. Цепочка - несколько последовательных ячеек. На считывание первой ячейки уходит довольно много времени (60-70 нс) независимо от типа памяти, а вот время чтения последующих сильно зависит от типа.

         В качестве оперативной памяти также используются модули RIMM, SO-DIMM и SO-RIMM. Все они имеют разное количество контактов. Модули SIMM сейчас встречаются только в старых моделях материнских плат, а им на смену пришли 168-контактные DIMM. Модули SO-DIMM и SO-RIMM, имеющие меньшее количество контактов, чем стандартные DIMM и RIMM, широко используются в портативных устройствах. Модули RIMM можно встретить в платах на новом чипсете Intel 840. 

Модуль памяти SO-DIMM

        При установке совпадение форм-факторов модуля и разъема не всегда стопроцентно гарантирует работоспособность модуля. Для сведения к минимуму риска использования неподходящего устройства применяются так называемые ключи. В модулях памяти такими ключами являются один или несколько вырезов. Этим вырезам на разъеме соответствуют специальные выступы. Так в модулях DIMM используется два ключа. Один из них (вырез между 10 и 11 контактами) отвечает за буферизованность модуля (модуль может быть буферизованным или небуферизованным), а второй (вырез между 40 и 41 контактами) - за рабочее напряжение (может быть 5 В или 3,3 В).  

Модуль памяти DDR DIMM 

         Использование модулей памяти с покрытием контактов, отличным от покрытия контактов разъема также допускается. Хотя утверждают, что материал, используемый для покрытия модулей и разъемов, должен совпадать. Мотивируется это тем, что при различных материалах возможно появление гальванической коррозии, и, как следствие, разрушение модуля. Хотя такое мнение не лишено оснований, но, как показывает опыт, использование модулей и разъемов с разным покрытием никак не сказывается на работе компьютера.

        Также не всегда бывает, что после установки в компьютер модуля SIMM большей емкости он нормально работает. Модули большой емкости можно использовать только в том случае, если их поддерживает системная плата. Допустимую емкость и необходимое быстродействие модулей SIMM можно выяснить в документации к компьютеру.

Производители чипов 

        Существует много фирм, производящих чипы и модули памяти. Их можно разделить на brand-name и generic-производителей.

         При покупке (особенно на рынках) хорошо бы лишний раз убедиться в правильности предоставляемой продавцом информации (как говорится, доверяй, но проверяй). Произвести такую проверку можно расшифровав имеющуюся на чипе строку букв и цифр (как правило, самую длинную) с помощью соответствующего databook и материалов, находящихся на сайте производителя. Но часто бывает, что необходимой информации не оказывается под рукой. И все же своей цели можно добиться, т. к. большинство производителей придерживаются более или менее стандартного вида предоставления информации (исключение составляют Samsung и Micron). По маркировке чипа можно узнать производителя, тип памяти, рабочее напряжение, скорость доступа, дату производства и др.

        В конце прошлого года после долгого ожидания появились первые системные платы на чипсете Intel 820, поддерживающие память Direct Rambus. Правда, в наших магазинах пока нельзя приобрести ни таких плат, ни память.

        Немаловажным вопросом при переходе на новую систему является ее стоимость. При покупке системной платы на i820 скорее всего придется приобретать новую память, т. к. этот чипсет поддерживает DRDRAM.

        Технология производства DRDRAM не очень сильно отличается по стоимости от производства SDRAM, но необходимо учесть, что стандарт RDRAM является закрытым и, следовательно, чтобы производить эти чипы, фирма должна приобрести соответствующую лицензию. Естественно, все эти дополнительные расходы на производство отразятся на конечном пользователе (по некоторым данным, память Direct Rambus стоит в пять раз дороже SDRAM).

        Помимо использования другой технологии, модули Direct Rambus используют и более низкое рабочее напряжение по сравнению с DIMM (2,5 В в Direct Rambus против 3,3 В в SDRAM). 

                       
 
 
 
 
 
 
 
 
 

                          5 Увеличение объема памяти. 

        Увеличение существующего объема памяти – один из наиболее эффективных и дешевых способов модернизации. Первый вопрос, который возникает при выборе оперативной памяти – это какой объем нужен? В первую очередь необходимый объем оперативной памяти определяет операционная система. Самая распространенная на сегодняшний день операционная система это Windows’98. Для того чтобы данная система могла более-менее спокойно работать ей необходимо ~ 32Mb оперативной памяти. Плюс нужна память для запуска рабочих приложений. Получаем следующее – для нормальной работы в среде Windows’98 необходимо 48Mb оперативной памяти. Если Вы будете играть в игры, то Вам потребуется от 64Mb до 128 Mb. В любом случае – оперативная память это важнейший элемент всего PC, ее объем напрямую связан с быстродействием того или иного компьютера.

Добавление  памяти сравнительно недорогая операция. Кроме того, даже незначительное увеличение памяти может существенно повысить производительность компьютера.

Добавить  память в компьютер можно тремя  способам:

-  Добавление памяти в свободные разъемы платы.

-  Замена установленной памяти, памятью большего объема.

-  Приобретение платы расширения памяти.

        Добавление дополнительной памяти в устаревшие РС- или ХТ- совместимые системы неэффективно, так как плата с двумя мегабайтами дополнительной памяти может стоить дороже всего компьютера. Кроме того данный тип памяти бесполезен при использовании Windows, а компьютеры класса РС или ХТ не смогут работать под управлением OS2/, лучше приобрести более мощный компьютер.

        Прежде чем добавлять в компьютер микросхемы памяти (или заменять дефектные микросхемы), следует определить тип необходимых микросхем памяти. Эта информация должна содержаться в документации к системе.

        Если необходимо заменить дефектную микросхему памяти и нет возможности обратиться к документации, то тип установленных микросхем можно определить путем визуального их осмотра. На каждой микросхеме есть маркировка, которая указывает ее емкость и быстродействие.

        Если необходимо расширить вычислительные возможности системной платыы путем добавления памяти, надо следовать указаниям фирмы – производителя микросхем памяти или модуля. В персональном компьютере могут использоваться микросхемы памяти DIP, SIMM, SIPP и DIMM, причем можно устанавливать модули как одного типа, так и нескольких.

       Производитель системной платы компьютера определяет, какие в нем будут использоваться микросхемы памяти: DIP, SIMM или DIMM..

       Используемые микросхемы памяти, независимо от их типа, образуют банки памяти, т.е. совокупность микросхем, которые составляют блок памяти. Каждый банк считывается процессором за один такт. Банк памяти не станет работать до тех пор, пока небудет окончательно заполнен.

       В компьютерах на основе Pentium, Pentium Pro и PentiumII содержится от двух до четырех банков памяти, причем каждый состоит из 72-контактных (32- или 36-разрядных) модулей SIMM или одного 168-контактного модуля DIMM.

       Установка дополнительной памяти на системной плате – несложный способ увеличить объем памяти компьютера. Большинство систем имеет хотя бы один незанятый банк памяти, в который можно установить дополнительную память, и таким образом повысить производительность компьютера.

Информация о работе Типы оперативной памяти