Эволюция звезд

Автор работы: Пользователь скрыл имя, 15 Декабря 2010 в 21:09, курсовая работа

Описание

Звезда начинает свою жизнь как холодное разрежённое облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газового шара возрастает. Когда температура в ядре достигает нескольких миллионов К, начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом.

Содержание

1.Введение...............................................................................................................................3
2.Рождение звезд.....................................................................................................................4
3.Молодые звезды...................................................................................................................6
– Молодые звезды малой массы...................................................................................–

– Молодые звезды промежуточной массы..................................................................–

– Молодые звезды с массой больше 8 солнечных масс.............................................–

4.Середина жизненного цикла звезды..................................................................................8
5.Зрелость.................................................................................................................................9
6.Последние годы и гибель звезды.......................................................................................10
– Старые звезды с малой массой..................................................................................–

– Звезды среднего размера............................................................................................–

Белые карлики................................................................................................11

– Сверхмассивные звезды.............................................................................................–

Нейтронные звезды........................................................................................12

Черные дыры...................................................................................................–

7.Литература...........................................................................................................................13

Работа состоит из  1 файл

Эволюция звезд.doc

— 522.00 Кб (Скачать документ)

   Белые карлики

   Вскоре  после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

   Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

   У звезд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

   Сверхмассивные звёзды

 

   

   Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад 

   После того, как внешние слои звезды, с  массой большей чем пять солнечных, разлетелись образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

   В конечном итоге, по мере образования  всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невыгодно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

   То  что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды  приводит к взрыву сверхновой звезды невероятной силы.

   Сопутствующий этому всплеск нейтрино провоцирует ударную волну. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

   Взрывная  волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В  последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

   Процессы, протекающие при образовании  сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также стоит под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

   Нейтронные звёзды

   Известно, что в некоторых сверхновых сильная  гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они сливаясь с протонами образуют нейтроны. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

   Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера  крупного города, и имеют невообразимо высокую плотность. Период их обращения  становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звезды получили название "пульсары", и стали первыми открытыми нейтронными звёздами.

   Чёрные дыры

   Далеко  не все сверхновые становятся нейтронными  звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.

   Существование чёрных дыр было предсказано общей теорией относительности. Согласно ОТО материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика делает возможным исключения из этого правила.

   Остаётся  ряд открытых вопросов. Главный среди них: "А есть ли черные дыры вообще?" Ведь чтобы сказать точно, что данный объект это черная дыра необходимо наблюдать его горизонт событий. Все попытки это сделать оканчивались провалом. Но надежда пока есть, т.к. некоторые объекты нельзя объяснить без привлечения аккреции, причем аккреции на объект без твердой поверхности, но само существование черных дыр это не доказывает.

   Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла? 
 
 
 
 
 
 
 
 
 
 
 

   Литература 

    1. Большая электронная  энциклопедия «Кирила и Мефодия» 2006г.
    2. Д. Моше «Астрономия» Москва «Просвещение» 1985г.
    3. Е.П. Левитан «Астрономия 11» Москва «Просвещение» 1994г.
    4. И.С. Шкловский «Вселенная, жизнь, разум» Москва «Просвещение»1970г.
    5. Ф.М. Дягилев «Концепции современного естествознания в вопросах и ответах» Нижневартовск издательство НГГУ 2007г.
    6. http://ru.wikipedia.org/wiki/
    7. http://www.astronet.ru/

Информация о работе Эволюция звезд