Эволюция звезд

Автор работы: Пользователь скрыл имя, 29 Апреля 2012 в 15:59, реферат

Описание

Подавляющее большинство звезд меняют свои основные характеристики (светимость, радиус) очень медленно. В каждый данный момент их можно рассматривать как находящиеся в состоянии равновесия – обстоятельство, которым мы широко пользовались для выяснения природы звездных недр.

Содержание

Необратимость эволюции звезд…………………………………………....стр.3-14
Диалектика «борьбы» между гравитацией и температурой
в течение «жизни» звезд……………………………………………………стр.15-17
Звездные «отставки»: белые карлики, нейтронные звезды, чернее дыры.
Белые карлики………………………………………………………стр.18-23
Нейтронные звезды………………………………………………...стр. 24-31
Черные дыры………………………………………………………..стр.32-36
Список литературы…………………………………………………………стр.37

Работа состоит из  1 файл

Эволюция звёзд.doc

— 690.00 Кб (Скачать документ)

     Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, «разрешена». Это означает, что мы можем измерять только потоки излучения от звезд в разных спектральных участках. Мерой величины потока является видимая звездная величина, определение которой предполагается известным.

     Исключительно богатую информацию дает изучение спектров звезд. В настоящее время техника  астрономических спектральных исследований стала очень тонкой и рафинированной. В частности, широко применяются новейшие достижения электроники и других областей современной технической физики. Мы, естественно, не можем здесь по этому поводу писать сколько-нибудь подробно. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами О, В, A, F, G, К, М. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами В и А обозначается как В0, В1…В9, А0 и т. д. Спектр звезд в первом приближении похож на спектр излучающего «черного» тела с некоторой температурой T . Эти температуры плавно меняются от 40—50 тысяч кельвинов у звезд класса О до 3000 кельвинов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходится на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности Земли. Однако в последние годы были запущены специализированные искусственные спутники Земли; на их борту были установлены телескопы, с помощью которых оказалось возможным исследовать и ультрафиолетовое излучение звезд.

     Характерной особенностью звездных спектров является еще наличие у них огромного  количества линий поглощения, принадлежащих  различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.

     Химический  состав наружных слоев звезд, откуда к нам «непосредственно» приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов сравнительно невелико. Приблизительно на каждые 10 000 атомов водорода приходится тысяча атомов гелия, около десяти атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд — это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов.

     Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие  звезды спектральных классов О и  В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми; звезды же спектральных классов К и М — красные. В астрофизике имеется тщательно разработанная

и вполне объективная система цветов. Она  основана на сравнении наблюдаемых  звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезды характеризуется разностью ее величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи («B»), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом («V »). Техника измерений цвета звезд настолько высока, что по измеренному значению B − V можно определить спектр звезды с точностью до подкласса. Для слабых звезд анализ цветов — единственная возможность их спектральной классификации.

      Знание  спектрального класса или цвета  звезды сразу же дает температуру  ее поверхности. Так как (как уже  говорилось выше) звезды излучают приблизительно как абсолютно черные тела соответствующей  температуры, то мощность, излученная единицей их поверхности, определяется из закона Стефана — Больцмана:

                                                           

,                                                                     (4)

где — постоянная Больцмана. Мощность излучения всей поверхности звезды, или ее светимость, очевидно, будет равна

                                                             

,                                                          (5)

где R — радиус звезды. Таким образом, для определения радиуса звезды нужно знать ее

светимость  и температуру поверхности.

      Нам остается определить еще одну, едва ли не самую важную характеристику звезды — ее массу. Надо сказать, что  это сделать не очень просто. А  главное существует не так уже много звезд, для которых имеются надежные определения их масс. Последние легче всего определить, если звезды образуют двойную систему, для которой большая полуось орбиты a и период обращения P известны. В этом случае массы определяются из третьего закона Кеплера, который может быть записан в следующем виде:

                                                        ,                                                            (6)

Здесь M и M — массы компонент системы, G = 6,67 · 10 — постоянная в законе всемирного тяготения Ньютона. Уравнение (6) дает сумму масс компонент системы. Если к тому же известно отношение орбитальных скоростей обеих компонент, то их массы можно определить отдельно. К сожалению, только для сравнительно небольшого количества двойных систем можно таким способом определить массы каждой из звезд.

     В сущности говоря, астрономия не располагала  и не располагает в настоящее  время методом прямого и независимого определения массы изолированной (т. е. не входящей в состав кратных систем) звезды. И это весьма серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Последние же определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее «сестра», входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.

     Итак, современная астрономия располагает  методами определения основных звездных характеристик: светимости, поверхностной  температуры (цвета), радиуса, химического состава и массы. Возникает важный вопрос: являются ли эти характеристики независимыми? Оказывается, нет. Прежде всего имеется функциональная зависимость, связывающая радиус звезды, ее болометрическую светимость и поверхностную температуру.

     Первая  стадия жизни звезды подобна солнечной  – в ней доминирую реакции  водородного цикла. Температура  звезды определяется ее массой и степенью гравитационного сжатия, которому противостоит главным образом световое давление. Звезды образует относительно устойчивую колебательную систему, ее периодические слабые сжатия и расширения определяют звездные циклы. По мере выгорания водорода в центре звезды, ее гелиевое ядро остывает, а зона протекания реакции синтеза перемещается на периферию, звезда «разбухает», поглощая планеты ее системы, и остывает, превращаясь в красного гиганта.

     Дальнейшее сжатие гелиевого ядра поднимает его температуру до зажигания реакций гелиевого цикла. Водородная оболочка постепенно рассеивается, образуя звездную туманность, а сильно сжатое ядро раскаляется до высоких температур, соответствующих свечению бело-голубым светом (“белый карлик”). По мере выгорания топлива звезда угасает, превращаясь в устойчивого “черного карлика” - характерный итог эволюции большинства звезд с массой, порядка солнечной.

     Более массивные звезды на этапе превращения в белого карлика теряют водородную оболочку в результате мощного взрыва, сопровождающегося многократным увеличением светимости (“сверхновые звезды”). После выгорания их ядер сил давления в плазме оказывается недостаточным для компенсации гравитационных сил. В результате уплотнения вещества электроны “вдавливаются” в протоны с образованием нейтральных частиц. Возникает нейтронная звезда - весьма компактное (радиус в несколько километров) и массивное образование, вращающееся с фантастически высокой для космических объектов скоростью: около одного оборота в секунду. Вращающееся вместе со звездой его магнитное поле посылает в пространство узконаправленный луч электромагнитного (часто- рентгеновского) излучения, действуя подобно маяку. Источники мощного периодического излучения, открытые в радиоастрономии, получили название пульсаров.

     Звезды с массой, превосходящей массу Солнца более, чем в два раза, обладают столь сильным гравитационным полем, что на стадии нейтронной звезды их сжатие на останавливается. В результате дальнейшего неограниченного сжатия - гравитационного коллапса звезда уменьшается до таких размеров, что скорость, необходимая для ухода тела с ее поверхности на бесконечность превышает предельную (скорость света). При этом ни одно тело (даже свет) не может покинут непрерывно сжимающуюся звезду, представляющую собой “черную дыру”, размерами всего в несколько километров. Существование черных дыр допускают уравнения Общей Теории Относительности. В области черной дыры пространство-время сильно деформированы.

     Астрономические наблюдения затруднены, поскольку такие объекты не излучают свет. Однако обнаружены звезды, совершающие движение, характерное для компонент двойных звезд, хотя парной звезды не наблюдается. Весьма вероятно, что ее роль играет черная дыра или не излучающая нейтронная звезда.

     Помимо перечисленных обнаружен ряд астрофизических объектов, свойства которых не укладываются в приведенные схемы - квазары. Наблюдаемое их излучение аналогично пульсарному, но очень сильно смещено в красную область. Величина красного смещения указывает на то, что квазары находятся так далеко, что их наблюдаемая яркость соответствует излучению, превосходящему по интенсивности излучения галактического скопления. В то же время наличие быстрых изменений интенсивности ставит вопрос о механизме согласования излучения элементами системы, размеры которой должны составлять тысячи световых лет. 
 
 
 
 
 
 
 
 
 

Белые карлики.

     Белые карлики — конечный продукт эволюции ядер планетарных туманностей.

      Из  трех видов «продуктов» заключительного  этапа эволюции звезд (белые карлики,

нейтронные  звезды и черные дыры) первыми были обнаружены астрономическими наблюдениями белые карлики. В этом случае практика намного опередила теорию. Белые  карлики были, так сказать, «эмпирически» открыты до того, как астрономы поняли, что такое звезда и почему она светит. К понятию «вырожденный газ» ( квантовый газ при температуре ниже вырождения температуры Т . Вырождение наступает, когда длина волны де Бройля, соответствующая энергии теплового движения частиц, становится сравнимой со средним расстоянием между ними. В обычных атомных или молекулярных газах вырождения не происходит. Электронный газ в металлах — всегда вырожденный газ) физики пришли значительно позже того, как были открыты белые карлики. Конечно, ничего удивительного в этом нет — ведь в любом куске металла, известного человечеству еще со времен бронзового века, как оказалось, электроны находятся в вырожденном состоянии. Видеть и изучать это еще не значит понять, да и уровни понимания могут быть разные. Все же факт остается фактом: белые карлики были сначала увидены, а затем поняты.

     Первый белый карлик был открыт «на кончике пера» в 1844 г. Фридрихом Бесселем при изучении ярчайшей звезды ночного неба — Сириуса. Оказалось, что если начертить кривую движения Сириуса, то звезда будет периодически смещаться от своего среднего положения. Это легко объяснить, если предположить, что Сириус (будем называть его теперь Сириус А) входит в двойную систему. То есть существует звезда-соседка, называемая Сириус В, и два светила вращаются вокруг общего центра масс. Слабую звездочку Сириус В впервые непосредственно увидел в телескоп Алван Кларк в 1862 г.

     Удивительной оказалась звезда-соседка. При массе, сравнимой с солнечной, и достаточно высокой температуре (горячие звезды имеют белый цвет) Сириус В оказалась очень слабой звездочкой. Это означает, что ее размеры очень малы, а, следовательно, велика плотность. Если подставить типичные для белых карликов значения (масса порядка 1030 кг и размер порядка нескольких тысяч километров), то получится плотность порядка 10г/см3. Это несравненно выше плотности окружающего нас вещества. Самый плотный металл на Земле имеет плотность менее 30 г/см3. Плотность вещества в центре Солнца около 100 г/см3. Можно было ожидать, что свойства сверхплотного вещества окажутся необычными.

Информация о работе Эволюция звезд