Эволюция планеты Земля, возникновение жизни

Автор работы: Пользователь скрыл имя, 31 Января 2013 в 14:31, контрольная работа

Описание

В данной работе будут коротко освещены некоторые аспекты возникновения жизни и процесса эволюции.

Работа состоит из  1 файл

Введения.docx

— 73.14 Кб (Скачать документ)

Кислотный дождь оказывает  отрицательное воздействие на водоемы - озера, реки, заливы, пруды - повышая  их кислотность до такого уровня, что  в них погибает флора и фауна. Водяные растения лучше всего  растут в воде со значениями рН между 7 и 9.2. С увеличением кислотности (показатели рН удаляются влево от точки отсчета 7) водяные растения начинают погибать, лишая других животных водоема пищи.     

Кислотный дождь наносит вред не только водной флоре и фауне. Он также уничтожает растительность на суше. Ученые считают, что хотя до сегодняшнего дня механизм до конца еще не изучен, сложная смесь загрязняющих веществ, включающая кислотные осадки, озон, и тяжелые металлы  в совокупности приводят к деградации лесов.  

 

 

 

 

Причины возникновения  кислотных дождей. Последствия влияния  на биосферу.

 

Атмосферные выбросы  загрязняющих  веществ.     

При анализе соединений, которые являются предшественниками кислотных дождей, а так же при определении интенсивности кислотных дождей необходимо учитывать не только антропогенные источники, но и природные источники, например лесные массивы, поскольку они в процессе газообмена выделяют значительное количество органических веществ. Имеет значение и степень урбанизации отдельных регионов, например выделяемый из антропогенных источников аммиак может существенно влиять на нейтрализацию кислотных компонентов. При этом вследствие загрязнения воздуха природными источниками сокращение промышленных выбросов не всегда может дать требуемый положительный эффект.       

 

Поступление в  атмосферу соединений  серы. 

Соединения  серы частично попадают в атмосферу  естественным путем, а частично антропогенным. Поверхность суши, как и поверхность океанов и морей, играет роль естественного источника. Обычно деятельность человека ограничивается сушей, поэтому мы можем учитывать загрязнение серой только на этой территории.      

Существуют  три основных источника естественной эмиссии серы.      

1. Процессы разрушения биосферы. С  помощью анаэробных (действующих  без участия кислорода) микроорганизмов  происходят различные процессы  разрушения органических веществ.  Благодаря этому содержащаяся  в них сера образует газообразные соединения. Вместе с тем определенные анаэробные бактерии извлекают из сульфатов, растворенных в естественных водах, кислород, в результате чего образуются сернистые газообразные соединения.      

Из  указанных веществ сначала в  атмосфере был обнаружен сероводород, а затем с развитием измерительных приборов и способов отбора проб воздуха удалось выделить ряд органических газообразных соединений серы. Наиболее важными источниками этих газов являются болота, зоны приливов и отливов у береговой линии морей, устья рек и некоторые почвы, содержащие большое количество органических веществ.      

Поверхность моря также может содержать значительные количества сероводорода. В его возникновении  принимают участие морские водоросли. Можно предположить, что выделение серы биологическим путем не превышает 30-40 млн т в год, что составляет около 1/3 всего выделяемого количества серы.      

2. Вулканическая деятельность. При  извержении вулкана в атмосферу  наряду с большим количеством  двуокиси серы попадают сероводород,  сульфаты и элементарная сера. Эти соединения поступают главным образом в нижний слой - тропосферу, а при отдельных, большой силы извержениях наблюдается увеличение концентрации соединений серы и в более высоких слоях - в стратосфере. С извержением вулканов в атмосферу ежегодно в среднем попадает около 2 млн. т. серосодержащих соединений. Для тропосферы это количество незначительно по сравнению с биологическими выделениями, для стратосферы же извержения вулканов являются самым важным источником появления серы.      

В результате деятельности человека в  атмосферу попадают значительные количества соединений серы, главным образом в виде ее двуокиси. Среди источников этих соединений на первом месте стоит уголь, сжигаемый в зданиях и на электростанциях, который дает 70% антропогенных выбросов. Содержание серы (несколько процентов) в угле достаточно велико (особенно в буром угле). В процессе горения сера превращается в сернистый газ, а часть серы остается в золе в твердом состоянии.      

Содержание  серы в неочищенной нефти также достаточно велико в зависимости от места происхождения (0, 1-2%). При сгорании нефтяных продуктов сернистого газа образуется значительно меньше, чем при сгорании угля.      

Источниками образования двуокиси серы могут  быть также отдельные отрасли промышленности, главным образом металлургическая, а также предприятия по производству серной кислоты и переработке нефти. На транспорте загрязнение соединениями серы относительно незначительно, там в первую очередь необходимо считаться с оксидами азота.      

Таким образом, ежегодно в  результате деятельности человека в  атмосферу попадает 60-70 млн т. серы в виде двуокиси серы. Сравнение естественных и антропогенных выбросов соединений серы показывает, что человек загрязняет атмосферу газообразными соединениями серы в 3-4 раза больше, чем это происходит в природе. К тому же эти соединения концентрируются в районах с развитой промышленностью, где антропогенные выбросы в несколько раз превышают естественные, т. е. главным образом в Европе и Северной Америке.      

Примерно  половина выбросов, связанных с деятельностью человека (30-40 млн т), приходится на Европу.

Поступления в  атмосферу соединений  азота.  

Соединения  азота могут попадать в атмосферу как естественными, так и антропогенными путями.  Рассмотрим наиболее важные естественные источники.     

Почвенная эмиссия оксидов  азота. В процессе деятельности живущих в почве денитрифицирующих бактерий из нитратов высвобождаются оксиды азота. Согласно современным данным ежегодно во всем мире образуется 8 млн т оксидов азота.     

Грозовые разряды. Во время электрических разрядов в атмосфере из-за очень высокой температуры и перехода в плазменное состояние молекулярные азот и кислород в воздухе соединяются в оксиды азота. В состоянии плазмы атомы и молекулы ионизируются и легко вступают в химическую реакцию. Общее количество образовавшихся таким способом оксидов азота составляет 8 млн т в год.     

Горение биомассы. Этот источник может быть как естественным, так и искусственным. Наибольшее количество биомассы сгорает в результате выжигания леса (с целью получения производственных площадей) и пожаров в саванне.  При горении биомассы в воздух поступает 12 млн т оксидов азота в год.     

Прочие  источники естественных выбросов оксидов азота менее значительны и с трудом поддаются оценке. К ним относятся: окисление аммиака в атмосфере, разложение находящейся в стратосфере закиси азота, вследствие чего происходит обратное попадание образовавшихся оксидов в тропосферу и, наконец, фотолитические и биологические процессы в океанах. Эти естественные источники совместно вырабатывают в год 2-12 млн т оксидов азота.     

Среди антропогенных источников образования оксидов азота на первом месте стоит горение ископаемого топлива (уголь, нефть, газ и т. д.). Во время горения в результате возникновения высокой температуры находящиеся в воздухе азот и кислород соединяются. Количество образовавшегося оксида азота NO пропорционально температуре горения. Кроме того, оксиды азота образуются в результате горения имеющихся в топливе азотсодержащих веществ. Сжигая топливо, человек ежегодно выбрасывает в воздух 12 млн т оксидов азота.. Значительным источником оксидов азота также является транспорт.      

В целом количества естественных и  искусственных выбросов приблизительно одинаковы, однако последние, так же как и выбросы соединений серы, сосредоточены на ограниченных территориях Земли.     

Необходимо  упомянуть, однако, что количество выбросов оксидов азота из года в год  растет в отличие от эмиссии двуокиси серы, поэтому соединения азота играют огромную роль в образовании кислотных осадков.

Химические превращения  соединений серы  и азота в атмосфере.  

Попадающие  в воздух загрязняющие вещества в  значительной мере подвергаются физическим и химическим воздействиям в атмосфере. Эти процессы идут параллельно их распространению. Очень часто загрязняющие вещества, испытав частичное или полное химическое превращение, выпадают в осадок, изменив таким образом свое агрегатное состояние.   

Рассмотрим  подробнее химические реакции и  фазовые изменения, происходящие с  атмосферными кислотными микроэлементами (веществами).

Химические превращения  соединений серы: 

 

 

   Сера  входит в состав в не полностью  окисленной форме (степень окисления  ее равна 4). Если соединения серы находятся  в воздухе в течение достаточно длительного времени, то под действием содержащихся в воздухе окислителей они превращаются в серную кислоту или сульфаты.    

Рассмотрим  в первую очередь наиболее значительное с точки зрения кислотных дождей вещество?  двуокись серы..    

Одной из гомогенных реакций является взаимодействие молекулы двуокиси серы с фотоном в видимой области спектра, относительно близкой к ультрафиолетовой области:

.     

В результате этого процесса возникают  так называемые активированные молекулы, которые располагают избыточной энергией по сравнению с основным состоянием. Звездочка означает активированное состояние. Активированные молекулы двуокиси серы в отличие от «нормальных» молекул могут вступать в химическое взаимодействие с находящимся в воздухе в довольно больших количествах молекулярным кислородом:      

 

(активированная  молекула двуокиси + молекулярный  кислород 

свободный радикал)     

 

(свободный  радикал + молекулярный кислород 

триоксид серы + озон)     

Образовавшаяся  триоксид серы, взаимодействуя с атмосферной  водой, очень  быстро превращается в  серную кислоту, поэтому при обычных  атмосферных условиях триокись серы не содержится в воздухе в значительных количествах. В гомогенной среде  двуокись серы может вступить во взаимодействие с атомарным кислородом, также с образованием триокиси серы:     

 

 

     (двуокись  серы + атомарный кислород 

триокись серы)     

Эта реакция протекает в тех средах, где имеется относительно высокое содержание двуокиси азота, которая также под действием света выделяет атомарный кислород.     

В последние годы было установлено, что  описанные выше механизмы превращения  двуокиси серы в атмосфере не имеют  превалирующего значения, так как  реакции протекают главным образом при участии свободных радикалов. Свободные радикалы, возникающие при фотохимических процессах, содержат непарный электрон, благодаря чему они обладают повышенной реакционноспособностью. Одна из таких реакций протекает следующим образом:      

 

 

     (двуокись  серы +радикал гидроксила 

свободный радикал)     

 

 

     (свободный  радикал + радикал гидроксила 

серная кислота)     

В результате реакции образуются  молекулы серной кислоты, которые в воздухе или на поверхности аэрозольных частиц быстро конденсируются.     

Превращение двуокиси серы может осуществляться и в гетерогенной  среде. Под  гетерогенным превращением мы понимаем химическую реакцию, которая происходит не в газовой фазе, а в каплях или на поверхности частиц, находящихся в атмосфере.     

Кроме двуокиси серы в атмосфере можно  обнаружить значительное количество других природных соединений серы, которые  в конечном счете окисляются до серной кислоты. В их превращении важную роль играют образовавшиеся фотохимическим путем свободные радикалы и атомы. Конечные продукты играют определенную роль в антропогенной кислотной седиментации.

Химические превращения  соединений азота:     

Наиболее  распространенным соединением азота, входящим в состав выбросов, является окись азота , который при взаимодействии с кислородом воздуха образует двуокись азота. Последний в результате реакции с радикалом гидроксида превращается в азотную кислоту:     

 

 

     (двуокись  азота + радикал гидроксила 

азотная кислота).     

Полученная  таким образом азотная кислота  может долгое время оставаться в  газообразном состоянии, так как  она плохо конденсируется. Другими  словами, азотная кислота обладает большей летучестью, чем серная. Пары азотной кислоты могут быть поглощены капельками облаков, осадков или частицами аэрозоля.

Кислотная седиментация (кислотные  дожди). 

 

 

     Заключительным  этапом в круговороте загрязняющих веществ является седиментация, которая может происходить двумя путями. Первый путь? вымывание осадков или влажная седиментация. Второй путь? выпадение осадков или сухая седиментация. Совокупность этих процессов является кислотной седиментацией.

Вымывание кислотных  веществ из атмосферы.     

Вымывание происходит во время образования  облаков и осадков. Одним из условий  образования облаков является перенасыщенность. Это означает, что воздух содержит больше водяного пара, чем он может  принять при заданной температуре, сохраняя равновесие. При понижении температуры способность воздуха накапливать воду в виде пара уменьшается. Тогда начинается конденсация водяного пара, которая происходит до тех пор, пока не прекратится перенасыщенность. Однако при обычных атмосферных условиях водяной пар способен конденсироваться только при относительной влажности 400-500%. Относительная влажность в атмосфере лишь в редких случаях может превысить 100,5%. При такой перенасыщенности капельки облаков могут возникать только на частицах аэрозоля? так называемых конденсационных ядрах. Этими ядрами часто являются хорошо растворимые в воде соединения серы и азота.     

После начала образования капель элементы облака продолжают поглощать аэрозольные  частицы и молекулы газа. Поэтому  воду облака или его кристаллы  можно рассматривать как раствор атмосферных элементов.     

Информация о работе Эволюция планеты Земля, возникновение жизни