Гидрогеология

Автор работы: Пользователь скрыл имя, 16 Марта 2012 в 08:02, реферат

Описание

Гидрогеология — наука о подземных водах. Подземными называются воды, находящиеся ниже поверхности земли, приуроченные к различным горным породам и заполняющие поры, трещины и карстовые пустоты. Гидрогеология изучает происхождение и развитие подземных вод, условия их залегания и распространения, законы движения, процессы взаимодействия подземных вод с вмещающими горными породами.

Содержание

1. Гидросфера и кругооборот воды в природе
2. Виды воды в горных породах
3. Свойства горных пород по отношению к воде
4. Понятие о зоне аэрации и насыщения

Работа состоит из  1 файл

гидрогеология.doc

— 1.71 Мб (Скачать документ)
n:justify">Ввиду сложности химического состава природных вод при оценке питьевых, лечебных, технических, мелиоративных и др. качеств важно принимать не только абсолютное содержание отдельных ионов, но и предполагаемые ассоциации анионов и катионов (солей). Они рассчитываются по правилу Фрезениуса (вначале выпадают мало растворимые соли, потом более растворимые).

VI. Оценка пригодности воды для различных целей.

Водоснабжение. По ГОСТу 2874-73 «Вода питьевая» и СанПиН 2.1.4.1074-01 вода должна отвечать следующим требованиям: Минерализация до 1 г/л (по разр. СЭС до 1,5 г/л); жесткость 7 мг-экв/л. до 350 мг/л; до 500 мг/л (Абдрахманов, Чалов, Абдрахманова, 2007).

Орошение. Оросительная вода по минерализации и химическому составу должна быть физиологически доступной растениям и не вызывать засоления и осолонцевания почвы. Важное значение играет изучение содержания микрокатионов биологически активных микроэлементов: I, Br, B, Co, Cu, Mn, Mo (Абдрахманов, Методические…, 2008).

VII. Агрессивные свойства подземных вод. Под ними понимается способность воды разрушать различные строительные материалы, воздействуя на них растворенными солями, газами или выщелачивая их составные части. Особое значение имеет агрессивное действие воды на бетонные сооружения. Основным вяжущим веществом в бетоне является цемент. Практическое значение агрессивного действия воды на бетон сооружения настолько велико, что ни одно сколько-нибудь существенное строительство не обходится без предварительного гидрохимического исследования водной среды. Согласно СН-249-63 различают следующие виды агрессивного действия воды на бетон: выщелачивания, углекислотная, общекислотная, сульфатная, магнезиальная.

Агрессивность выщелачивания проявляется в растворении карбоната кальция, входящего в состав бетона. Она возможна при малом содержании в воде (0,4-1,5 мг-экв/л) а избыток растворяет .

Углекислотная агрессивность обусловлена действием на бетон .

В наиболее опасных условиях максимально допустимое содержание агрессивной углекислоты () составляет 3 мг/л, менее опасных до 8,3 мг/л.

Общекислотная агрессивность характерна для кислых вод и зависит от содержания свободных водородных ионов. При pH 5,0-6,8 возможен этот вид агрессии.

Сульфатная агрессивность проявляется при большом содержании ионов , которые проникая в тело бетона при кристаллизации образуют соли . Образование этих солей в порах бетона сопровождается увеличением их объема и разрушением бетона. Агрессивность проявляется при обычных цементах при более 250 мг/л, при сульфат стойких – 4000 мг/л.

Магнезиальный вид агрессивности проявляется, так же как и сульфатный, в разрушении бетона при проникновении воды в тело бетона. Этот вид возникает при высоком содержании . В зависимости от цемента он проявляется при содержании магния от 1,0 до 2,5 г/л.

VIII. Формирование химического состава подземных вод. Под факторами формирования химического состава подземных вод понимаются движущие силы, обуславливающие течение разнообразных процессов, которые изменяют минерализацию и химический состав вод. Химический состав подземных вод формируется под влиянием следующих факторов: выщелачивание почв и горных пород, полное растворение минералов и пород, концентрирование солей в воде в результате испарения, выпадение солей из природных растворов при изменении термодинамических условий, катионный обмен в поглощающем комплексе илов, почв, глинистых пород ( на и на ), диффузия и микробиологические процессы, смешение вод различного происхождения. Процесс обмена наблюдается между катионами глинистых пород – воды и зависит от емкости поглощающего комплекса (табл. 3).

Таблица 3

Емкость поглощения некоторых глинистых минералов

Минерал

Емкость от поглощения, мг-экв на 100 г

Каолинит

Иллит

Монтморилланит

Вермикулит

Галлуазит

3-15

10-40

80-180

100-150

5-50


 

Процессы эти зависят от климатических, геоморфологических, геологических, гидродинамических и др. условий. Значительную роль в формировании химического состава подземных вод играет состав осадков. Роль атмосферных осадков в формировании состава маломинерализованных вод хорошо известно. Из атмосферы на земную поверхность поступает значительное количество растворенных солей. В Республике Башкортостан в анионном составе дождевых вод преобладают гидрокарбонатные ионы (41-85%), реже сульфатные и хлористые. Среди катионов превалирует натрий (40-75%), реже кальций. Минерализация дождевых вод колеблется от 23 до 88 мг/л, pH -6,0-6,7, – 9-16 мг/л, минерализация снеговых вод 19-54 мг/л. По подсчетам на 1 км2 территории Башкортостана поступает 25-27 тон солей в год. На территории Европейской части СССР достигает 50-85 на 1 км2.

Осадки постепенно инфильтруясь вглубь насыщаются солями в почвенном горизонте затем в зоне аэрации. Это происходит в результате растворения солей, минералов, горных пород в соответствии с их растворимостью. Растворимость изменяется в широких пределах, зависит от температуры воды и содержания других солей. Растворимость солей в дистиллированной воде при 7ºС равна (г/л) – 0,013, – 2,01, – 193,9, – 168,3, – 358,6, – 329,3, – 354,3, – 558,1. Растворимость в присутствии  возрастает в 4 раза. При наличии в воде CO2 возрастает растворимость карбонатов.

В рыхлых покровных образованиях происходит формирование первых от поверхности водоносных горизонтов грунтового типа. Анализ водных вытяжек из пород зоны аэрации свидетельствует о том, что при действии на них атмосферных вод, имеющих слабокислую реакцию, наблюдается солей из зоны аэрации. Основными солями, поступающими в подземные воды, являются карбонаты и сульфаты кальция и карбонаты магния. Из почвы выносится избытки азотнокислого калия, используемого на полях как удобрение. Содержание достигает 200 мг/л.

В степных областях России в результате испарения в зоне аэрации накапливается большое количество солей. Чем ближе к поверхности расположены грунтовые воды, тем выше при прочих равных условиях их минерализация. При неглубоких грунтовых водах до 1 м возможно накопление солей и на поверхности земли. В пустынных и полупустынных часто образуются грунтовые подземные воды с высокой минерализацией (до 10-20 и более) сульфатно-хлоридного и хлоридного состава.

Гидрокарбонатные кальциевые воды (образуются) формируются при растворении карбонатов кальция (известняков). Сульфатные кальциевые воды при растворении гипсов. Гидрокарбонатные натриевые воды в результате катионного обмена между водой гидрокарбонатно-кальциевого состава + поглощ. комплекс Na почв. грунта.

Благоприятная обстановка для течения реакции создается на орошаемых полях.

При содовом засолении для превращения соды в менее вредную соль вносят

Анионы и катионы. Первоисточники анионов и катионов.

Первоисточниками минерального состава природных вод являются:

1) газы, выделяемые из недр земли в процессе дегазации.

2) продукты химического воздействия воды с магматическими породами. Эти первоисточники состава природных вод имеют место до сих пор. В настоящее время в химическом составе воды выросла роль осадочных пород.

Происхождение анионов связано главным образом с газами, выделявшимися при дегазации мантий. Состав их сходен с современными вулканическими газами. В атмосферу наряду с паром воды поступают газообразные водородистые соединения хлора (HCl), азота (), серы (), брома (HBr), бора (НB), углерода (). В результате фитохимического разложения CH4 образуется СО2:

Далее идет процесс образования иона (HCO3):

насыщ

В результате окисления сульфидов идет образование иона .

Происхождение катионов связано с горными породами. Средний химический состав изверженных пород (%): – 59, – 15.3, – 3.8, – 3.5, – 5.1, – 3.8, – 3.1 и т. д.­

В результате выветривания горных пород (физического и химического) происходит насыщение катионами подземных вод по схеме: .

При наличии анионов кислот (угольной, соляной, серной) образуются соли кислот: .

Микроэлементы. Типичные катионы: Li, Rb, Cs, Be, Sr, Ba. Ионы тяжелых металлов: Cu, Ag, Au, Pb, Fe, Ni, Co. Амфотерные комплексообразователи (Cr, Co, V, Mn). Биологически активные микроэлементы: Br, I, F, B.

Микроэлементы играют важную роль в биологическом круговороте. Отсутствие или избыток фтора вызывают болезни кариес и флюороз. Недостаток иода – болезни щитовидной железы и др.

Химия атмосферных осадков. В настоящее время развивается новая отрасль гидрохимии – химия атмосферы. Атмосферная вода (близкая к дистиллированной) содержит многие элементы.

Кроме атмосферных газов () в воздухе присутствуют примеси, выделившиеся из недр земли компонентов ( и др.), элементы биогенного происхождения () и другие органические соединения.

В геохимии изучение химического состава атмосферных осадков позволяет охарактеризовать солевой обмен между атмосферой, поверхностью земли, океанов. Последние годы в связи с атомными взрывами в атмосферу поступают радиоактивные вещества.

Аэрозоли. Источником формирования химического состава являются аэрозоли:

                  пылевидные минеральные частицы, высокодисперсные агрегаты растворимых солей, мельчайшие капли растворов газовых примесей (). Размеры аэрозолей (ядер конденсации) различны – радиус в среднем 20 мк (см) колеблется ( до 1 мк). Количество уменьшается с высотой. Концентрация аэрозолей максимальна в пределах городских территорий, минимальна в горах. Аэрозоли поднимаются ветром в воздух – эоловая эрозия;

                  соли поднимаемые с поверхности океанов и морей, льдов;

                  продукты вулканических извержений;

                  человеческой деятельности.

Формирование химического состава. В атмосферу поднимается огромное количество аэрозолей – они на поверхность земли опускаются:

1.      в виде дождей,

2.      гравитационного осаждения.

Формирование начинается с захвата аэрозолей атмосферной влагой. Минерализация колеблется от 5 мг/л до 100 мг/л и более. Первые порции дождя более минерализованы.

Прочие элементы в составе осадков:

– от сотых долей до 1-3 мг/л. Радиоактивные вещества: и др. Они поступают в основном при испытаниях атомных бомб.

 

Минеральные воды

Лечебные свойства минеральных вод определяются: минерализацией, ионно-солевым составом, содержанием биологически активных компонентов, газовым и окислительно-восстановительным потенциалом (Eh), активной реакцией среды (рН), радиоактивностью, температурой, содержанием сероводорода ().

Минимальная концентрация элементов для минеральных лечебных вод (мг/л): сероводород – 10, бром – 25; иод 5, фтор – 2, железо – 10, радон – 14 ед. Махе.

К промышленным водам относятся воды с содержанием компонентов не менее:


Таблица 4

Нормативные требования к минеральным промышленным водам

50 г/л

Галитовые

50 г/л

Сульфидные

50 г/л

Содовые

Br

250-500

Бромные

I

18

Иодные

150-200 мг/л

10 мг/л

Иодо-бромные

Ra

г/л

Радиевые

200 мг/л

Борные

Li

10-20 мг/л

Литиевые

K

1000 мг/л

Калиевые

Информация о работе Гидрогеология