Амплитуда экологических факторов. Значение фактора минимум, пессимум, оптимум, максимум. Закон минимума (привило Либиха) и закон максимум

Автор работы: Пользователь скрыл имя, 12 Февраля 2013 в 20:21, контрольная работа

Описание

Под средой понимается комплекс окружающих условий, влияющих на жизнедеятельность организмов. Комплекс условий складывается из разнообразных элементов – факторов среды. Не все из них с одинаковой силой влияют на организмы. Так, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но он не действует на более мелких, которые укрываются под снегом или в норах, либо живут в земле. Те факторы, которые оказывают какое-либо действие на организмы и вызывают у них приспособительные реакции, называются экологическими факторами [4. 6].

Работа состоит из  1 файл

контрольная .doc

— 793.00 Кб (Скачать документ)

В действительности механизм влагообмена океан атмосфера cуша океан значительно сложнее, так как в формировании общего количества осадков над материками заметное участие принимают внутренние осадки, сформировавшиеся как в периферийных, так и внутренних областях суши.

 

 

Рисунок 3 – Круговорот воды в природе [8]

Условные обозначения:

А1 – осадки, выпадающие над сушей; А2 – осадки, выпадающие над океаном; Б1 – испарение с суши; Б2 – транспирация растительностью; Б3 – испарение с озер и рек; Б4 – испарение с океана; В1 – инфильтрация воды в почву; В2 – потребление воды растительностью; В3 – подземный сток воды в реки и озера; В4 – подземный сток воды в океан; Г – поверхностный сток в озера и реки

 

В течение года в Мировом влагообороте принимает  участие всего 0,037% общей массы  гидросферы. Так как скорость переноса отдельных видов воды неодинакова, то и время их расходования и возобновления различно. Наиболее быстро возобновляются биологические воды, входящие в состав растений и живых организмов. Смена атмосферной влаги и запасов воды в руслах рек осуществляется за несколько дней. Запасы воды в озерах возобновляются в течение 17 лет, в крупных озерах этот процесс может длиться несколько сот лет. Наиболее длительный период восстановления имеют запасы воды в подземных льдах зоны многолетней мерзлоты – 10 000 лет. Полное возобновление океанических вод происходит через 2500 лет. Однако за счет внутреннего водообмена (морских течений) воды Мирового океана в среднем совершают полный оборот в течение 63 лет [3].

Круговорот  воды играет большую роль в географической оболочке. В процессе круговорота воды осуществляется перераспределение тепла. Тепло, затрачиваемое на испарение в одном месте, высвобождается при конденсации влаги в другом.

Круговорот  воды – важнейшее звено в энергетическом обмене между гидросферой и атмосферой. Скрытая энергия, поступившая в атмосферу с водяными парами с поверхности земного шара, частично преобразуется в механическую энергию, обеспечивающую перемещение воздушных масс. Наряду с энергетическим обменом, взаимодействие гидросферы и атмосферы в процессе влагооборота сопровождается и обменом веществами (газовый и солевой обмен).

 

Биологический (малый) круговорот веществ представляет собой совокупность процессов поступления химических организмов в живые организмы, биохимического синтеза новых сложных соединений и возвращение элементов в почву, атмосферу и гидросферу (рисунок 4).

 

 

Рисунок 4 – Схема биогехимического круговорота веществ в природе [5]

 

Абиогенный и биологический  круговороты тесно переплетаются, образуя общепланетарный геохимический круговорот и систему локальных круговоротов вещества. Таким образом, за миллиарды лет биологической истории нашей планеты сложились великий биогеохимический круговорот и дифференциация химических элементов в природе, которые являются основой нормального функционирования биосферы. То есть в условиях развитой биосферы круговорот веществ направляется совместным действием биологических, геологических и геохимических факторов. Соотношение между ними может быть разным, но действие – обязательно совместным [6, 9].

Полный цикл биологического круговорота элементов на суше слагается из следующих составляющих [2]:

  • поглощение растениями из атмосферы углерода, а из почвы – азота, зольных элементов и воды, закрепление их в телах растительных организмов, поступление в почву с отмершими растениями или их частями, разложение опада и высвобождение заключенных в них элементов;
  • поедание частей растений питающимися ими животными, превращение их в телах животных в новые органические соединения и закрепление части из них в животных организмах, последующее поступление их в почву с экскрементами животных или с их трупами, разложение и тех и других и высвобождение заключенных в них элементов;
  • газообмен между растениями и атмосферой (в том числе, почвенным воздухом);
  • прижизненные выделения надземными органами растений и их корневыми системами некоторых элементов непосредственно в почву.

Элементами  биогеохимического круговорота являются следующие составляющие: непрерывные или регулярно повторяющиеся процессы притока энергии, образование и синтез новых соединений; постоянные или периодические процессы переноса или перераспределения энергии и процессы выноса и направленного перемещения синтезированных соединений под влиянием физических, химических и биологических агентов [1, 2].

Общий биогеохимический круговорот элементов включает биогеохимические циклы отдельных химических элементов. Наиболее важное значение в функционировании биосферы в целом и отдельных геосистем более низкого классификационного уровня играют круговороты нескольких химических элементов, необходимых для живых организмов в связи с их ролью в составе живого вещества и физиологических процессах. К числу таких наиболее необходимых химических элементов относятся углерод, кислород, азот, сера, фосфор и др.

Биогеохимический  цикл углерода.

С углеродом  тесно связан весь процесс возникновения  и развития биосферы, т.к. именно углерод является основой белковой жизни на нашей планете, т.е. углерод является важнейшим химическим компонентом живого вещества. Именно этот химический элемент, благодаря своей способности образовывать прочные связи между своими атомами, является основой всех органических соединений.

Основным резервуаром  углерода в биосфере, из которого этот элемент заимствуется живыми организмами  для синтеза органического вещества, является атмосфера. Углерод содержится в ней, главным образом, в форме диоксида СО2. Небольшая доля атмосферного углерода входит в состав других газов – СО и различных углеводородов, в основном метана СН4. Но они в кислородной атмосфере неустойчивы, и вступают в химические взаимодействия с образованием, в конечном счёте, того же СО2.

Из атмосферы  углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями, цианобионтами) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения – углеводы. Далее, в результате процессов метаболизма, с участием веществ, поступающих с водными растворами, в организмах синтезируются и более сложные органические вещества. Они не только используются для формирования растительных тканей, но также служат источником питания для организмов, занимающих очередные звенья трофической пирамиды – консументов. Таким образом, по трофическим цепям, углерод переходит в организмы различных животных [1, 3, 9].

Возвращение углерода в окружающую среду происходит двумя путями: в процессе дыхания и разложение органического вещества.

Хранители углерода – это живая биомасса, гумус, известняки и каустобиолиты. Естественными источниками углекислого газа, кроме вулканических извержений, являются процессы разложения органического вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах. Техногенная углекислота составляет 20х109 т, что пока намного меньше, чем естественное ее поступление в атмосферу. Роль углерода в биосфере наглядно иллюстрируется схемой его круговорота (рисунок 5).

 

Рисунок 5 – Схема круговорота углерода [1]

 

Биогеохимический  цикл кислорода.

В настоящее  время количество кислорода в  атмосфере составляет 1,2х1015 тонн. Благодаря не замкнутости биогеохимического круговорота часть органического вещества сохраняется, и свободный кислород постепенно накапливается в атмосфере. Главная «фабрика» по производству кислорода на нашей планете – зеленые растения, хотя в земной коре также протекают разнообразные химические реакции, в результате которых выделяется свободный кислород.

Поглощение  и выделение кислорода происходит и при смене сезонов года, сопровождающихся изменением температуры воды. Кислород расходуется в громадном количестве окислительных реакций, большинство из которых имеет биохимическую природу. В этих реакциях высвобождается энергия, поглощенная в ходе фотосинтеза. В почвах, илах, водоносных горизонтах развиваются микроорганизмы, использующие кислород для окисления органических соединений. Запасы кислорода на нашей планете огромны. Он входит в состав кристаллических решеток минералов и высвобождается из них живым веществом.

Таким образом, общая схема круговорота кислорода  в биосфере складывается из двух ветвей: образование свободного кислорода при фотосинтезе; поглощение кислорода в окислительных реакциях (рисунок 6).

 

 

Рисунок 6 – Схема биогеохимического цикла кислорода [3]

 

Биогеохимический  цикл водорода.

Содержание  водорода в земной коре, в отличие  от кислорода сравнительно невелико. В земной коре свободный водород неустойчив. Он быстро соединяется с кислородом, образуя воду, а также участвует в других реакциях. Значительное количество водорода поступает на поверхность Земли при вулканических извержениях. Постоянно образуется газообразный водород и в результате некоторых химических реакций, а также в процессе жизнедеятельности бактерий, разлагающих органическое вещество в анаэробных условиях [3, 5, 7].

Организмы закрепляют водород в биосфере планеты, связывая его не только в органическом веществе, но и участвуя в фиксации водорода минеральным веществом почвы. Это становится возможным в результате диссоциации кислотных продуктов метаболизма с высвобождением иона водорода.

Из циклических  процессов на поверхности Земли, в которых участвует водород, один из наиболее мощных – круговорот воды. В процессе круговорота воды в биосфере происходит разделение изотопов водорода и кислорода. Пары воды при испарении обогащаются легкими изотопами, поэтому атмосферные осадки, поверхностные и грунтовые воды также обогащены легкими изотопами по сравнению с океаническими водами, имеющими устойчивый изотопный состав.

Биогеохимический  цикл азота.

Азот и его  соединения играют в жизни биосферы такую же важную и незаменимую роль. Основным резервуаром азота в биосфере также является воздушная оболочка. Около 80% всех запасов азота сосредоточено в атмосфере планеты, что связано с направлением биогеохимических потоков соединений азота, образующихся при денитрификации.

Основной формой, в которой содержится азот в атмосфере, является молекулярная – N2. В качестве несущественной примеси в атмосфере содержатся различные оксидные соединения азота NOx, а также аммиак NH3. Аммиак в условиях земной атмосферы наиболее неустойчив и легко окисляется. В то же время, величина окислительно-восстановительного потенциала в атмосфере недостаточна и для устойчивого существования оксидных форм азота, потому его свободная молекулярная форма и является основной.

В отличие от углерода, атмосферный азот не может  напрямую использоваться высшими растениями. Поэтому ключевую роль в биологическом круговороте азота играют организмы-фиксаторы. Это микроорганизмы нескольких различных групп, обладающие способностью путём прямой фиксации непосредственно извлекать азот из атмосферы и, в конечном счёте, связывать его в почве. К ним относятся: некоторые свободноживущие почвенные бактерии; симбионтные клубеньковые бактерии (существующие в симбиозе с бобовыми); цианобионты, которые также бывают симбионтами грибов, мхов, папоротников, а иногда и высших растений.

В результате деятельности организмов – фиксаторов азота он связывается в почвах в нитритной форме (соединения на основе NH3).

Нитритные соединения азота способны мигрировать в  водных растворах. При этом они окисляются и преобразуются в нитратные – соли азотной кислоты HNO3. В этой форме азотные соединения способны эффективно усваиваться высшими растениями и использоваться для синтеза белковых молекул на основе пептидных связей C-N. Далее, по трофическим цепям, азот попадает в организмы животных. В окружающую среду (в водные растворы и в почву) он возвращается в процессах выделительной деятельности животных или разложения органического вещества [2, 5, 8].

Возврат свободного азота в атмосферу, как и его  извлечение, осуществляется в результате микробиологических процессов. В литосфере, в составе осадочных отложений, связывается весьма небольшая часть азота. Благодаря вулканической деятельности в атмосферу поступают различные газообразные соединения азота, который в условиях географической оболочки Земли неизбежно переходит в свободную молекулярную форму (рисунок 7).

 

 

Рисунок 7 – Схема биогеохимического цикла азота [1]

 

Биогеохимический  цикл серы.

Сера также  является одним из элементов, играющих чрезвычайно важную роль в круговороте веществ биосферы. Она относится к числу химических элементов, наиболее необходимых для живых организмов. В частности, она является компонентом аминокислот. Она предопределяет важные биохимические процессы живой клетки, является незаменимым компонентом питания растений и микрофлоры. Соединения серы участвуют в формировании химического состава почв, в значительных количествах присутствуют в подземных водах, что играет решающую роль в процессах засоления почв.

Информация о работе Амплитуда экологических факторов. Значение фактора минимум, пессимум, оптимум, максимум. Закон минимума (привило Либиха) и закон максимум