Альтернативные источники энергии

Автор работы: k*************@gmail.com, 28 Ноября 2011 в 13:17, курсовая работа

Описание

Слово «энергия» в переводе с греческого означает действие, деятельность. Согласно современным представлениям энергия – это общая количественная мера различных форм движения материи. Существуют качественно разные физические формы движения материи, способные взаимно превращаться. В середине XX в. было установлено важное свойство материи: все ее формы движения превращаются друг в друга в строго определенных отношениях. Именно такое свойство и позволило ввести понятие энергии как общей меры движения материи.

Содержание

ВВЕДЕНИЕ 2
1. ГИДРОИСТОЧНИКИ И ГЕОТЕРМАЛЬНЫЕ ИСТОЧНИКИ ЭНЕРГИИ 4
2. ГЕЛИОЭНЕРГЕТНКА 8
3. ЭНЕРГИЯ ВЕТРА 11
4. АТОМНАЯ ЭНЕРГЕТИКА 13
5. ЭНЕРГИЯ МИРОВОГО ОКЕАНА 16
ЗАКЛЮЧЕНИЕ 18
СПИСОК ЛИТЕРАТУРЫ 19

Работа состоит из  1 файл

Альтернативные источники энергии (19 стр. реф.).doc

— 154.00 Кб (Скачать документ)

Содержание 
 
 
 
 
 
 

 

Введение

     Слово «энергия» в переводе с греческого означает действие, деятельность. Согласно современным представлениям энергия – это общая количественная мера различных форм движения материи. Существуют качественно разные физические формы движения материи, способные взаимно превращаться. В середине XX в. было установлено важное свойство материи: все ее формы движения превращаются друг в друга в строго определенных отношениях. Именно такое свойство и позволило ввести понятие энергии как общей меры движения материи.

     Уровень развития современного общества во многом определяется производством и потреблением энергии. Благодаря потреблению энергии движется транспорт, улетают в космос ракеты, готовится пища, обогреваются жилища и приводятся в действие кондиционеры, освещаются улицы и т. д. Можно сказать: окружающий нас мир заполнен энергией, которая может быть использована для совершения различных видов работы. Энергией обладают люди и животные, камни и растения, ископаемое топливо и деревья, реки и озера, Мировой океан и т. п.

     В последнее время как никогда, обсуждается вопрос: что ждет человечество – энергетический голод или энергетическое изобилие? На страницах газет и журналов все чаще появляются статьи об энергетическом кризисе. Стремление обладать источником энергии (обычно нефти) приводит к возникновению войн. Газетными сенсациями стали сообщения о запуске новых энергетических установок и новые изобретения в области энергетики. Предлагаются гигантские энергетические программы, рассчитанные на привлечение огромных материальных ресурсов.

     Если  в конце XIX века самая распространенная сейчас энергия – электрическая – играла вспомогательную и незначительную роль, то уже в 1930 г. во всем мире было произведено около 300 млрд кВт•ч электроэнергии. Вполне реален прогноз, согласно которому в 2005 г. будет произведено 30 тыс. млрд кВт•ч. Гигантские цифры, небывалые темпы роста, но все равно энергии мало, потребности в ней растут быстро.

     Развитие  экономики, уровень материального  благосостояния, людей находится  в прямой зависимости от количества потребляемой энергии. Многие виды трудовой деятельности основаны на потреблении энергии. Для добычи руды, выплавки из нее металла, для строительства дома и т. д., нужна энергия. Потребности людей постоянно растут, потребителей энергии становится все больше – все это приводит к необходимости увеличения объемов производимой энергии.

     Природные энергоресурсы могут быть одним  из основных источников процветания  жизни.

     Из  фундаментального закона природы следует, что пригодную для потребления  энергию можно получить из других форм энергии в результате их преобразования. Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт электроэнергии получаются в принципе тем же способам, которым пользовался первобытный человек для согревания, т. е. при сжигании топлива или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Конечно, способы сжигания топлива стали намного сложнее и совершеннее. Новые факторы – возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды – потребовали нового подхода к энергетике.

     Можно назвать три основных способа  преобразования энергии. Первый из них  заключается в получении тепловой энергии при сжигании топлива (ископаемого  или растительного происхождения) и потреблении ее для непосредственного  обогревания жилых домов, школ, предприятий и т. п. Второй способ – преобразование заключенной в топливе тепловой энергии в механическую работу, например, при использовании продуктов перегонки нефти для обеспечения движения различного оборудования, автомобилей, тракторов, поездов, самолетов и т. д. Третий способ – преобразование тепла, высвобождающегося при сгорании топлива или деления ядер, в электрическую энергию с последующим ее потреблением либо для производства тепла, либо для выполнения механической работы.1

     Электроэнергия  получается и при преобразовании энергии падающей воды. Электроэнергия таким образом играет роль своеобразного посредника между источниками энергии и ее потребителями. Как посредник на рынке ведет к повышению цен, так и потребление энергии в форме электричества приводит к росту цен из-за потерь при преобразовании одного вида энергии в другой. В то же время преобразование различных форм энергии в электрическую удобно, практично, а иногда это единственно возможный путь реального потребления энергии. В ряде случаев просто невозможно эффективно использовать энергию, не превратив ее в электрическую. До открытия электричества энергия падающей воды (гидроэнергия) применялась для обеспечения движения механических устройств: прядильных машин, мельниц, лесопилок и т. д. После преобразования гидроэнергии в электрическую сфера применения значительно расширялась, стало возможным ее потребление на значительных расстояниях от источника. Энергию деления ядер урана, например, невозможно непосредственно использовать без превращения ее в электрическую.

     Ископаемые  виды топлива, в отличие от гидроисточников, долгое время применялись лишь для  отопления и освещения, а не для  работы различных механизмов. Дрова  и уголь, а нередко и высушенный торф сжигались для обогрева жилых  домов, общественных и промышленных зданий. Уголь, кроме того, применялся и применяется для выплавки металла. Угольное масло, полученное путем перегонки угля, заливалось в лампы. Только после изобретения паровой машины в XVIII в. был по-настоящему раскрыт потенциал данного ископаемого топлива, ставшего источником не только тепла и света, но и движения различных механизмов и машин. Появились паровозы, пароходы с паровыми двигателями, работавшие на угле. В начале XX в. уголь начали сжигать в топках котлов электростанций для производства электроэнергии.

     В настоящее время ископаемое топливо  играет исключительно важную роль. Оно дает тепло и свет, является одним из основных источников электроэнергии и механической энергии для обеспечения  огромного парка многочисленных машин и различных видов транспорта. Не следует забывать, что ископаемое органическое сырье в огромных количествах потребляется химической промышленностью для производства большого многообразия полезной и ценной продукции. 
 

 

     

1. Гидроисточники и  геотермальные источники  энергии

     В последнее время возрастает интерес  к неорганическим источникам энергии, т. е. источникам, в которых не принимает  участие химический процесс –  горение. К ним относятся гидроисточники (гидроэлектростанции, гидроаккумулирующие  электростанции, приливные электростанции), геотермальные источники, гелиоисточники, ветроустановки и атомные электростанции.

     Гидроэлектростанций

     Принцип работы гидроэлектростанций основан  на преобразовании потенциальной энергии  падающей воды в кинетическую энергию  вращения турбины, связанной с генератором, преобразующим кинетическую энергию в электрическую. Первые гидроэлектростанции относились к проточному типу, при котором вода реки не подпруживалась, а просто пропускалась через турбину. Для них требуется большой перепад уровней реки, например как на Ниагарском водопаде, где и была построена первая гидроэлектростанция подобного типа. На современных гидроэлектростанциях возводятся громадные плотины для увеличения объема воды, равномерно пропускаемой через турбины (см. рис. 9.8). Плотина не только создает вместилище для накопления воды, но и повышает ее уровень. При этом увеличивается потенциальная энергия воды, что приводит к возрастанию кинетической энергии вращения турбины и в конечном результате – к увеличению вырабатываемой электроэнергии. Вода из водохранилища по напорному трубопроводу направляется на горизонтально вращающиеся лопасти турбины, соединенной с генератором. Обычно на гидроэлектростанции используется много турбогенераторных агрегатов. КПД гидроэлектростанций составляет 60—70%, т. е. 60—70% энергии падающей воды преобразуется в электрическую энергию.2

     Сооружение  гидроэлектростанций обходится  дорог, и они требуют эксплуатационных расходов, но зато работают на «бесплатном  топливе». Первоисточником гидроэнергии служит Солнце, испаряющее воду из океанов, морей, озер и рек. Водяной пар конденсируется в виде осадков, выпадающих в возвышенных местах, с которых конденсированная вода стекает вниз в моря. Гидроэлектростанции встают на пути стока и преобразуют энергию движущейся воды в электрическую.

     Однако  гидроэлектростанции не совсем уж безвредны  для окружающей среды. Плотины и  водохранилища выводят из сельскохозяйственного  оборота затопленные земли. Их площадь  чрезвычайно велика особенно на равнинных  реках: естественный перепад уровней воды в них небольшой. Громадные площади водохранилищ способствуют образованию необычно большого количество паров воды в атмосфере, что неизбежно приводит к нарушению естественных погодных условий. Плотины отрицательно влияют на качество воды, накапливаемой в водохранилищах. В зависимости от сезона накопленная вода может содержать мало растворенного кислорода и оказаться неблагоприятной средой для рыб и других живых организмов. Кроме того, спускаемая вода разрушает русло реки. В то же время гидроэлектростанции, построенные на реках с естественным перепадом уровня воды – на реках с водопадами, горных реках, – наносят гораздо меньший ущерб окружающей среде.

     Гидроаккумулирующие электростанции

     Они служат для аккумулирования избыточной энергии, вырабатываемой не относящимися к гидроисточникам электростанциями, когда потребление электроэнергии падает, например, ночью. При аккумулировании вода перекачивается из нижнего водоема в верхний. При этом поступающая извне электрическая энергия преобразуется в потенциальную энергию воды в верхнем водоеме. В часы пиковой нагрузки в электросети вода из верхнего водоема через гидроагрегаты перетекает в нижний, и запасенная потенциальная энергия воды преобразуется в электрическую. Эффективность гидроаккумулирующих электростанций не очень высокая: только примерно две трети энергии, потраченной на накачку воды, возвращается обратно в электросеть. Строительство таких станций требует больших капиталовложений, поэтому они не получили широкого распространения. Обсуждаются идеи гидроаккумулирования энергии с использованием подземных водоемов естественного происхождения.3

     Приливные электростанции

     Морские приливы, долгое время оставаясь  загадкой, приводили к мысли, что  их громадную энергию можно использовать. Морские приливы – это периодические колебания уровня, обусловленные силами притяжения Луны и Солнца вместе с центробежными силами, вызванными вращением системы Земля – Луна и Земля – Солнце. Самая большая из таких сил – лунная – определяет в основном характер морских приливов. Обычно прилив и отлив бывают два раза в сутки. Максимальное поднятие воды называется полной водой, минимальное – малой водой. Величина полной воды в открытом океане около 1 м, у берегов – до 18 м (залив Фанди в Атлантическом океане).

     Приливные электростанции преобразуют энергию морских приливов в электрическую. Одна из разновидностей устройств приливных электростанций состоит из плотины с встроенными в придонной ее части турбогенераторами. Подобная приливная электростанция с таким устройством сооружена в 1967 г. на реке Ране во Франции, где полная вода достигает около 13 м. При открытых донных затворах плотины уровень полной воды по обе стороны плотины одинаков. В начале отлива поток воды, обращенный к суше пропускается через турбогенераторы, вырабатывающие электроэнергию. При малой воде затворы закрываются до тех пор, пока разница уровней не станет достаточной для эффективной работы турбогенераторов. Затем поток полной воды пропускается через турбогенераторы в направлении к суше. Данный цикл потом повторяется, и энергия таким образом вырабатывается при отливе и приливе.4

     Построенные приливные электростанции во Франции, России, Китае доказывают, что приливную  электроэнергию можно производить  в промышленных масштабах. Выработка  энергии на них не требует никакого топлива, и себестоимость энергии сравнительно низка. Однако стоимость строительства приливных электростанций относительно высока: она примерно в 2,5 раза больше стоимости сооружения гидроэлектростанции той же мощности. Одно из главных преимуществ приливных электростанций заключается в том, что они наносят минимальный ущерб окружающей среде.

     Геотермальные источники энергии

     С давних пор люди знают о стихийных  проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится, нет пока у людей возможностей обуздать такую непокорную стихию, да и, к счастью, извержения происходят не везде и не так уж часто. Но все же – это проявления неисчерпаемой энергии, таящейся в земных недрах, крохотная доля которой находит выход через огнедышащие жерла вулканов.

     Маленькая европейская страна Исландия (в переводе – «страна льда») полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от Земли – других местных источников энергии в Исландии практически нет. Эта страна очень богата горячими источниками и знаменитыми гейзерами – фонтанами горячей воды, вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников (еще древние римляне к знаменитым баням – термам Кара-каллы— подвели воду из-под земли), жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно.

Информация о работе Альтернативные источники энергии