Нетяговый подвижной состав

Автор работы: Пользователь скрыл имя, 15 Февраля 2013 в 04:13, контрольная работа

Описание

В зависимости от способа передвижения вагоны подразделяются на несамоходные, перемещение которых осуществляется локомотивами, и самоходные, называемые иногда автономными, которые для передвижения получают энергию от контактной сети (электропоезда, вагоны метро) или имеют свою энергетическую установку (автомотрисы, транс-феркары, дизель-поезда).

Работа состоит из  1 файл

Нетяговый подвижной состав. КР-1.doc

— 2.58 Мб (Скачать документ)

 


 

 

 

 

 

 

 

 

Тарельчатая рессора (рис. 3.25, б) состоит из набора упругих стальных тарелей, имеющих вид усеченного конуса с углом подъема у и высотой h, соединенных в секции по две, четыре и т.д. штук в каждой. В результате действия силы Р тарели распрямляются и угол у уменьшается. При этом рессора получает прогиб, смягчая ударную нагрузку. Тарельчатые рессоры в вагоностроении применяются редко. 
Кольцевая рессора (рис. 3.25, в) состоит из наружных 1 и внутренних 2 стальных колец, опирающихся друг на друга своими конусными поверхностями. Под действием нагрузки Р рессора прогибается вследствие упругих деформаций растяжения наружных и сжатия внутренних колец, так как на конусных их поверхностях возникают значительные поперечные силы. Кольцевые рессоры обладают очень высокой амортизационной способностью, достигающей 60—70% работы, т.е. могут воспринимать большие нагрузки и применяться в рессорном подвешивании тяжеловесных вагонов и ударно-тяговых приборах. 
  Витые пружины. В ходовых частях современных вагонов наибольшее распространение получили витые цилиндрические пружины (рис. 3.26, а), которые по сравнению с применяемыми ранее листовыми рессорами позволяют получать необходимые упругие характеристики при меньших массах и габаритных размерах, а в сочетании с гасителями колебаний обеспечивать более спокойный ход вагона. Кроме того, пружины могут смягчать горизонтальные толчки и удары, что не могут листовые рессоры; пружины также гораздо проще в изготовлении и ремонте, чем листовые рессоры. В силу своих преимуществ цилиндрические пружины почти вытеснили широко применяемые ранее листовые рессоры. 
  Конические пружины (рис. 3.26, б) имеют более благоприятную силовую характеристику, но сложны в изготовлении и ремонте. Поэтому они не нашли широкого распространения в вагоностроении.


 

 

 

 

 

 

 

 

 

 

 

 

При движении вагона по периодическим неровностям пути (стыкам рельсов, например) со скоростью, когда частоты вынужденных и собственных колебаний близки по величине, могут возникать большие амплитуды колебаний кузова на рессорах (резонанс), если в системе рессорного подвешивания отсутствуют или малы силы сопротивления. Поэтому для гашения резонансных колебаний в систему рессорного подвешивания вводят специальные гасители, которые позволяют снизить амплитуды и ускорения колебательного движения, а следовательно, уменьшить воздействие динамических сил на элементы вагона и перевозимый груз. Многочисленные разновидности конструкций гасителей колебаний, применяемых в подвижном составе железных дорог, можно объединить в две большие группы: фрикционные и вязкого сопротивления. Рассмотрим некоторые из них.

Фрикционные гасители колебаний наиболее широко применяются в тележках грузовых вагонов. 
В двухосных тележках типа ЦНИИ-ХЗ фрикционный гаситель колебаний состоит из двух фрикционных клиньев 2 (рис. 3.27, а), размещенных между наклонными поверхностями концов надрессорной балки 1 и фрикционными планками 5, укрепленными на колонках 4 боковой рамы тележки. Клинья опираются на двухрядные цилиндрические пружины 5.Работа таких гасителей заключается в следующем. При вертикальных колебаниях надрессорной балки 1 совместно с обрессоренными массами вагона фрикционные клинья 2 перемещаются вниз и вверх относительно фрикционных планок 3. В результате между клиньями и планками возникают силы трения, создающие сопротивление колебательному движению. При этом величина силы трения прямо пропорциональна прогибу пружин и возрастает с его увеличением, так как клинья прижимаются с большей силой. Работа сил трения преобразуется в тепловую энергию, которая рассеивается в окружающую среду. Такого типа гаситель называют фрикционным с переменной силой трения, зависящей от прогиба.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Фрикционный гаситель колебаний  с постоянной силой трения, показанный на рис. 3.27, б, устроен так, что сила трения не зависит от прогиба рессорного подвешивания. В пазах 5 концов надрессорной балки установлены башмаки 2, в которых размещены стаканы 3 с пружинами 4. Стакан 3 прижат предварительно сжатой пружиной 4 к фрикционной планке 1 боковой рамы тележки. Сила трения, возникающая при колебании надрессорной балки совместно с опирающимися на нее частями, постоянна и зависит только от жесткости и величины предварительного сжатия пружины, а также коэффициента трения между взаимодействующих плоскостей стаканов и фрикционных планок. 
  Фрикционный гаситель колебаний, применяемый в трехосных тележках типа УВЗ-9М (рис. 3.27, в), создает силы трения, пропорциональные прогибу рессорного подвешивания. Нагрузка от надрессорной балки тележки через прокладку 1 и нажимной конус 2 передается на два раздвигающихся клина 3. При деформациях рессорного подвешивания под действием скошенных поверхностей нажимного конуса 2 раздвижные клинья 3 прижимаются к внутренней поверхности фрикционного стакана 6. Между трущимися поверхностями раздвижных клиньев 3 и стакана 6 при их взаимном перемещении возникают силы трения, пропорциональные прогибу пружины 5, размещенной между фланцем стакана 6 и опорным кольцом 4. 
К гасителям колебаний с постоянной силой трения относится дисковый фрикционный гаситель (рис. 3.28, а), конструкция которого состоит из стального диска 6, зажатого между двумя фрикционными прокладками 2 с помощью пружины 7, болта 4, поводков 3 и резиновых прокладок 5. Рычаги 1 и 3 с помощью валиков крепят между опорами упругих элементов. При колебании вагона и относительном угловом перемещении рычагов 1 и 8, а следовательно диска 6 и прокладок 2, между ними возникают силы трения постоянной величины. Эти силы можно регулировать величиной сжатия пружины 7 с помощью гаек болта 4. 
Телескопический фрикционный гаситель колебаний фирмы Крайслер (рис. 3.28, б) является гасителем с постоянной силой трения и применяется в тележках грузовых и пассажирских вагонов зарубежных стран. Он состоит из башмаков 2 с фрикционными накладками 5, выполненными из асбестовой массы, которые прижимаются к корпусу 6 с помощью усилия пружины 4, воздействующей на конусные (клиновые) головку 1 и шайбу 3. Сила трения такого гасителя регулируется гайками 7, сжимающими пружину 4.

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Телескопический гаситель колебаний типа БИТМ (Брянский институт транспортного машиностроения) (рис. 3.28, в) отличается от гасителя фирмы Крайслер тем, что усилия на главные трущиеся поверхности передаются через эластичные прокладки 1 и 2 без вспомогательных клиновых поверхностей. Изменением толщины этих прокладок и усилием сжатия пружины можно регулировать соотношение сил трения при возвратно-поступательном движении частей гасителя относительно корпуса. Гаситель колебаний типа БИТМ обладает большей стабильностью по сравнению с гасителем фирмы Крайслер, поскольку усилия на главные трущиеся поверхности передаются через упругие элементы. 
  Телескопические гасители колебаний устанавливаются как вертикально, так и наклонно относительно оси упругих элементов подвешивания. При наклонном их расположении гасятся вертикальные и горизонтальные колебания вагона. Важным преимуществом телескопических гасителей является простота и быстрота замены неисправного гасителя исправным. 
  Гидравлические гасители колебаний. Как отмечалось выше, существенным недостатком фрикционных гасителей колебаний является нестабильность их работы, т.е. ухудшение силовой характеристики. Эти и другие недостатки устранены в гасителях колебаний гидравлического типа и других гасителях вязкого сопротивления, которые, несмотря на усложнение изготовления, ремонта и технического обслуживания, широко применяются в тележках современных пассажирских вагонов. 
В телескопических поршневых гидравлических гасителях колебаний сила сопротивления создается за счет перетекания жидкости из одной полости в другую через узкие калиброванные (дроссельные) отверстия. Сила сопротивления гасителя в этом случае зависит от вязкости жидкости, размеров дроссельных отверстий и пропорциональна скорости перемещения поршня. 
Силовую характеристику в этих конструкциях создают на основе требований к ходовым качествам вагона путем подбора вязкости жидкости и размеров дроссельных отверстий. 
Гидравлический гаситель колебаний (рис. 3.29) состоит из рабочего цилиндра 4, поршня 6 со штоком 1, неподвижного поршня 9 с отверстием 14, верхнего 7 и нижнего 8 клапанов, корпуса 3 и направляющей втулки 2. Между цилиндром 4 и корпусом 3 образуется резервуар 5. Гаситель заполнен вязкой жидкостью, которая подбирается с таким расчетом, чтобы в летнее и зимнее время ее вязкость изменялась незначительно.


 

 

 

 

 

 

 

 

 

 

 

 

 

Работа гидравлического  гасителя колебаний заключается в следующем. При движении поршня 6 вниз (ход сжатия) верхний клапан 7 приподнимается и жидкость из подпоршневой полости цилиндра 4 перетекает в надпоршневую 12 через большие отверстия 11. Одновременно вследствие движения штока 1 вниз давление под поршнем 6 повышается и часть жидкости с сопротивлением перетекает из полости 10 через дроссельное отверстие клапана 8 в резервуар 5.  В это время давление жидкости в надпоршневой 12 и подпоршневой 10 полостях цилиндра 4 выравнивается, так как полости 10 и 12 соединены между собой через большие отверстия 11 поршня и приподнятого вверх клапана 6. При движении поршня 6 вверх (ход растяжения) верхний клапан 7 закрывается под действием повышенного давления в надпоршневой полости 12 и жидкость с сопротивлением перетекает через дроссельные каналы в подпоршневую полость 10. Одновременно в полости 10 наступает разрежение, вследствие чего нижний клапан 5 поднимается и пропускает жидкость из резервуара 5 в подпоршневую полость 10, восполняя недостающий объем жидкости, поступающий из меньшего надпоршневого пространства, включающего объем штока 1. Резервуар 5 гасителя служит для размещения объема жидкости, вытесняемой штоком 1 из цилиндра при движении поршня 6 вниз, а также является сборником жидкости, просачивающейся через кольцевой зазор между штоком и направляющей втулкой 2. Для предотвращения выдавливания жидкости наружу гаситель имеет уплотнение 13.

Возвращающие и стабилизирующие  устройства. В тележках вагонов применяют возвращающие устройства, которые служат одновременно для смягчения боковых толчков, возникающих вследствие набегания гребней колес при извилистом движении колесных пар на прямых участках пути и при входе вагона в кривые, а также для возвращения отклоненного кузова под действием поперечных сил в среднее положение. 
Возвращающие устройства, применяемые в тележках вагонов, бывают двух типов, различающиеся по принципу действия и конструктивному выполнению. К первому типу относятся устройства, возвращающая сила которых создается за счет использования силы тяжести кузова, воздействующего на тележку. К подобным устройствам относятся конструкции, имеющие ролики (катки), размещенные между наклонными плоскостями (рис.3.30,а).При поперечном отклонении тележки относительно кузова возникает возвращающая сила Н, не зависящая от величины отклонения тележки. Если же ролики (катки) вместо наклонных плоскостей разместить в овальных (цилиндрических или выполненных по особому профилю) углублениях (система В.И. Бабина), то возвращающая сила Н будет возрастать по определенному закону с увеличением поперечных отклонений тележки в связи с ростом угла а от нуля (среднее положение) до максимального значения (максимальное отклонение тележки). 
К первому типу, в котором возвращающая сила создается за счет использования силы тяжести кузова, относится также люлечное подвешивание (рис. 3.30, б). При горизонтальном отклонении надрессорной балки 4, расположенной на упругих элементах 3, произойдет изменение наклона люлечных подвесок 2, что и вызовет появление горизонтального возвращающего усилия.

 

 

Люльки бывают с вертикальными  и наклонными подвесками 2. Вертикальные люлечные подвески при отклонении остаются параллельными между собой, а  подрессорная балка при этом остается параллельной первоначальному положению. В случае наклонных люлечных подвесок 2 создается большая величина возвращающей силы, зависящая от первоначального угла их наклона, но при этом происходит нежелательный наклон подрессорной балки 7, а иногда перекос и кручение кузова вагона. 
Во втором типе возвращающего устройства возвращающая сила обеспечивается за счет использования поперечной упругости упругих элементов рессорного подвешивания. В современных тележках грузовых вагонов, например, функции возвращающих устройств выполняют пружины, возвращающая сила которых пропорциональна величине их горизонтальной упругой деформации. В тележках пассажирских вагонов роль возвращающих устройств совместно с люлькой выполняют упругие поводки, а также пневматические и другие типы упругих элементов подвешивания. 
Одной из важнейших мер для улучшения плавности хода вагона в вертикальном направлении является увеличение гибкости рессорного подвешивания. Однако при этом возрастает боковая качка кузова и ухудшение поперечной устойчивости вагона. В этом случае применяют особые устройства — стабилизаторы, которые обеспечивают упругое сопротивление только крену кузова и позволяют значительно увеличить суммарный статический прогиб рессорного подвешивания вагона. В подвешивании могут быть использованы рычажные, торсионные и другие типы стабилизаторов боковой качки вагонов. 
Рычажный стабилизатор (рис. 3.31, а) включает в себя два равноплечих рычага 3 и 6, прикрепленных шарнирами 5 к надрессорной балке 7. Своими концами 2 рычаги 3 опираются на люлечные подвески 7, а противоположные концы рычагов с помощью валиков соединены между собой серьгами 4. Такое устройство противодействует наклону надрессорной балки тележки и препятствует боковой качке кузова, не влияя на вертикальные перемещения.

 

 


 

Торсионный стабилизатор (рис. 3.31, б) состоит из двух торсионов 2, свободно вращающихся в подшипниках 1, прикрепленных к раме тележки 6. Надрессорная балка 5 шарнирно соединена подвесками 5 с изогнутыми концами 4 торсионных стержней. Такое стабилизирующее устройство обеспечивает восстанавливающие моменты от скручивания торсионов при боковом отклонении кузова и противодействует его наклону.

 

 

 

5.1Силовые характеристики  листовых рессор и пружин.


Р – внешняя сила действующая  на рессору.

 F – Прогиб рессоры от силы Р.

Жесткость упругого элемента числена, равна вызывающей прогиб этого элемента равный единице длины.

С = Р/f

Рис 17 Силовая характеристика пружин

а. Цилиндрической         б. Конической

 

Жесткость для  ряда упругих элементов является величиной постоянной (цилиндрические пружины с постоянным шагом, большая часть листовых рессор). Для других упругих элементов (конические пружины, пневматические рессоры, резиновые амортизаторы при больших деформациях) жесткость обусловлена величиной их прогиба и может зависеть от скорости деформации.

 

Зависимость (силовая характеристика) между нагрузкой и прогибом рессоры или пружины характеризует их упругие свойства и способность к диссипации энергии колебаний. Для цилиндрических пружин, практически не способных рассеивать энергию колебаний, линии нагрузки и разгрузки совпадают и представляют собой прямую (рис. 17, а). Зависимость между нагрузкой и прогибом резиновых амортизаторов и пневматических рессор нелинейна (рис. 17, б), при этом линии нагрузки и разгрузки образуют петлю, площадь которой характеризует величину рассеивания энергии. На силовой характеристике листовой рессоры (рис. 18) нагрузка 8  изменяется пропорционально прогибу, жесткость рессоры постоянна. Но вследствие значительных сил трения между листами жесткость рессоры при разгрузке меньше, чем при нагрузке.

 


 

 

 

 

 

 

 

Рис 18 Теоретическая характеристика листовых рессор

 

Цилиндрические  винтовые пружины для подвижного состава изготовляют в соответствии с ГОСТ 14959-69 из прутков круглого сечения горячекатаной пружинной  и рессорной стали 55С2, 60С2, 65С2ВА. Допустимо применять стали 60С2А и 60С2ХФА. Твердость пружины в термообработанном состоянии должна быть равна НВ 370-440 или HRC 40-47. После термической обработки пружины необходимо упрочнять наклепом дробью, заклепыванием или другими способами. Режимы термообработки и упрочнения выбирают такими, чтобы они обеспечивали долговечность пружин в пределах установленного контрольного числа циклов нагружения.

Информация о работе Нетяговый подвижной состав