Основные классификационные свойства металлов

Автор работы: Пользователь скрыл имя, 28 Февраля 2013 в 17:35, контрольная работа

Описание

Характерные свойства металлов можно понять, исходя из их внутреннего строения. Все они имеют слабую связь электронов внешнего энергетического уровня (другими словами, валентных электронов) с ядром. Благодаря этому созданная разность потенциалов в проводнике приводит к лавинообразному движению электронов (называемых электронами проводимости) в кристаллической решётке. Совокупность таких электронов часто называют электронным газом. Вклад в теплопроводность, помимо электронов, дают фононы (колебания решётки).

Содержание

Введение 4
1 Происхождение слова «металл» 5
1.1 Нахождение в природе 5
1.2 Добыча 6
2. Физические свойства металлов 6
3. Химические свойства металлов 11
3.1 Реакции с простыми веществами 12
3.2. Взаимодействие кислот с металлами 13
4. Механические свойства металлов 14
5. Характерные свойства металлов 18
5.1. Кристаллическая структура 18
5.2. Скольжение и дислокации 20
5.3. Температурные эффекты 21
5.4. Магнитные свойства 22
5.5. Понятие об изотропии и анизотропии 22
Заключение 24
Список используемой литературы 25

Работа состоит из  1 файл

Металлы.docx

— 449.99 Кб (Скачать документ)

·  плотность упаковки атомов в кристаллической решетке – объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки – 0,68, для гранецентрированной кубической решетки – 0,74)

Схема кристаллической решетки  

 

Классификация возможных  видов кристаллических решеток  была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

·  примитивный – узлы решетки совпадают с вершинами элементарных ячеек;

·  базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях;

·  объемно-центрированный – атомы занимают вершины ячеек и ее центр;

·  гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней

 Основные типы кристаллических  решеток: а – объемно-центрированная  кубическая; б– гранецентрированная кубическая; в – гексагональная плотноупакованная  

 

Основными типами кристаллических  решёток являются:

  1. Объемно - центрированная кубическая (ОЦК) (см. рис.1.2а), атомы располагаются в вершинах куба и в его центре (V, W, Ti, )
  2. Гранецентрированная кубическая (ГЦК) (см. рис. 1.2б), атомы рассполагаются в вершинах куба и по центру куждой из 6 граней (Ag, Au, )
  3. Гексагональная, в основании которой лежит шестиугольник:
    • простая – атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);
    • плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк).

 

5.2. Скольжение и дислокации.

 

Процессы скольжения удалось  подробнее исследовать на монокристаллах металлов, выращенных в лаборатории. При этом выяснилось не только то, что  скольжение происходит в некоторых  определенных направлениях и обычно по вполне определенным плоскостям, но и то, что монокристаллы деформируются  при очень малых напряжениях. Переход монокристаллов в состояние  текучести начинается для алюминия при 1, а для железа - при 15-25 МПа. Теоретически же этот переход в обоих случаях  должен происходить при напряжениях  ок. 10 000 МПа. Такое расхождение между экспериментальными данными и теоретическими расчетами на протяжении многих лет оставалось важной проблемой.

В 1934 Тейлор, Полани и Орован предложили объяснение, основанное на представлении о дефектах кристаллической структуры. Они высказали предположение, что при скольжении сначала происходит смещение в какой-то точке атомной плоскости, которое затем распространяется по кристаллу. Граница между сдвинувшейся и несдвинувшейся областями (рис. 4) представляет собой линейный дефект кристаллической структуры, названный дислокацией (на рисунке эта линия уходит в кристалл перпендикулярно плоскости рисунка). Когда к кристаллу прикладывается напряжение сдвига, дислокация движется, вызывая скольжение по плоскости, в которой она находится. После того как дислокации образовались, они очень легко движутся по кристаллу, чем и объясняется "мягкость" монокристаллов.

Рис. 4. КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА. а - напряжение сдвига прилагается в направлении стрелок; слева образуется дислокация (б), обведенная кружком, которая движется вправо (в), после чего снова восстанавливается равновесие (г).

 

В кристаллах металлов обычно имеется множество дислокаций (общая  длина дислокаций в одном кубическом сантиметре отожженного металлического кристалла может составлять более 10 км). Но в 1952 научные сотрудники лабораторий  корпорации "Белл телефон", испытывая  на изгиб очень тонкие нитевидные кристаллы ("усы") олова, обнаружили, к своему удивлению, что изгибная прочность таких кристаллов близка к теоретическому значению для совершенных  кристаллов. Позднее были обнаружены чрезвычайно прочные нитевидные кристаллы и многих других металлов. Как предполагают, столь высокая  прочность обусловлена тем, что  в таких кристаллах либо вообще нет  дислокаций, либо имеется одна, идущая по всей длине кристалла.

 

5.3. Температурные эффекты.

 

Влияние повышенных температур можно объяснить, исходя из представлений  о дислокациях и зеренной структуре. Многочисленные дислокации в кристаллах деформационно-упрочненного металла искажают кристаллическую решетку и увеличивают энергию кристалла. Когда же металл нагревается, атомы становятся подвижными и перестраиваются в новые, более совершенные кристаллы, содержащие меньше дислокаций. С такой рекристаллизацией и связано разупрочнение, которое наблюдается при отжиге металлов.

5.4. Магнитные свойства.

 

Магнитные свойства металлов характеризуются следующими величинами: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Остаточной индукцией (Вr) называют магнитную индукцию, сохраняющуюся в образце после его намагничивания и снятия магнитного поля. Остаточную индукцию измеряют в гауссах.

Коэрцетивной силой (Нс) называют напряженность магнитного поля, которая должна быть приложена к образцу, чтобы свести к нулю остаточную индукцию, т. е. размагнитить образец. Коэрцетивную силу измеряют в эрстедах.

Железо, никель, кобальт и  гадолиний притягиваются к внешнему магнитному полю значительно сильнее, чем остальные металлы, и постоянно  сохраняют способность намагничиваться. Эти металлы называются ферромагнитными (от латинского слова феррум - железо), а их магнитные свойства - ферромагнетизмом. При нагреве до температуры 768°С (температура Кюри) ферромагнетизм исчезает, и металл становится немагнитным.

 

5.5. Понятие об изотропии и анизотропии.  

 

Из изложенного выше уясним, что характерные признаки металлов обусловлены их внутренним строением, т. е. структурой. Геометрическая правильность расположения атомов в кристаллических решётках придаёт металлам особенности, которых нет у аморфных тел.

1.Первой особенностью металлов является анизотропия свойств кристаллов, т. е. различие свойств кристаллов в разных направлениях.

Свойства тела зависят  от природы атомов, из которых оно  состоит, и от силы взаимодействия между  этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями между ними. В аморфных телах с хаотическим расположением атомов в пространстве расстояния между атомами в различных направлениях равны, следовательно, свойства будут одинаковые, то есть аморфные тела изотропны.

В кристаллических телах  атомы правильно располагаются  в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между  ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией

Чтобы понять явление анизотропии  необходимо выделить кристаллографические плоскости и кристаллографические направления в кристалле.

Плоскость, проходящая через  узлы кристаллической решетки, называется кристаллографической плоскостью.

Прямая, проходящая через узлы кристаллической решетки, называется кристаллографическим направлением.

Для обозначения кристаллографических плоскостей и направлений пользуются индексами Миллера. Чтобы установить индексы Миллера, элементарную ячейку вписывают в пространственную систему координат (оси X,Y, Z – кристаллографические оси). За единицу измерения принимается период решетки.

Примеры обозначения кристаллографических плоскостей (а) и кристаллографических направлений (б)

У металлических тел анизотропия  свойств не выражена так резко, как  у отдельных кристаллов. Металлы являются поликристаллическими телами, т. е. они состоят не из одного, а из бесчисленного количества кристаллов, по-разному ориентированных. Произвольность ориентировки каждого кристалла приводит к тому, что в любом направлении располагается приблизительно одинаковое количество различно ориентированных кристаллов. В результате получается, что свойства поликристаллических тел будут одинаковы во всех направлениях - это явление получило название «квазиизотропия» (ложная изотропия).

2. Второй особенностью металлов как тел кристаллического строения является наличие у них плоскостей скольжения (спайности).

По этим плоскостям происходит сдвиг или отрыв (разрушение) частиц кристаллов под действием внешних  усилий. У аморфных тел смещение частиц происходит не по определённым плоскостям, а беспорядочно. Излом аморфного тела всегда имеет неправильную, искривлённую форму.

3. Третьей особенностью металлов как тел кристаллического строения является то, что процесс перехода их из твёрдого состояния в жидкое и наоборот происходит при определённой температуре, называемой температурой плавления (затвердевания). Аморфные тела переходят в жидкое состояние постепенно и не имеют определённой температуры плавления.

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

 

Металлы относятся к числу  наиболее распространенных материалов, которые человек использует для обеспечения своих жизненных потребностей. В наши дни трудно найти такую область производства, научно-технической деятельности человека или просто его быта, где металлы не играли бы главенствующей роли как конструкционного материала.

Человек с самого раннего  возраста привыкает к окружающим его металлическим предметам домашнего обихода. Мы к ним настолько привыкли, что не замечаем и не задумываемся, откуда они берутся.

Современную жизнь нельзя представить без таких металлов и сплавов, как чугун, сталь, алюминий, медь, титан, бронза, золото, серебро и др. Будущее человечества тесно связано с использованием новых сплавов и металлов на металлической основе.

Металл – фундамент  современной цивилизации, основа основ технического прогресса. И чем выше поднимается человечество по ступеням развития, тем больше его нужда в металлах.

 

 

Список используемой литературы

 

  1. Интернет источник Википедия.
  2. Бернштейн М.Л., Займовский В.А. Механические свойства металлов. М., 1979
  3. Уайэтт О.Г., Дью-Хьюз Д. Металлы, керамики, полимеры. М., 1979
  4. Павлов П.А. Механические состояния и прочность материалов. Л., 1980
  5. Соболев Н.Д., Богданович К.П. Механические свойства материалов и основы физики прочности. М., 1985
  6. Жуковец И.И. Механические испытания металлов. М., 1986
  7. Бобылев А.В. Механические и технологические свойства металлов. М., 1987
  8. «Основы общей химии». Ю.Д.Третьяков, Ю.Г.Метлин. Москва «Просвещение» 1980 г.
  9. «Общая химия». Н.Л.Глинка. Издательство «Химия», Ленинградское отделение 1972 г.
  10. «Химия и научно-технический прогресс». И.Н.Семенов, А.С.Максимов, А.А.Макареня. Москва «Просвещение» 1988г.

Информация о работе Основные классификационные свойства металлов