Промышленные роботы. Основные определения и классификация

Автор работы: Пользователь скрыл имя, 01 Февраля 2013 в 23:16, реферат

Описание

Исторически мехатроника развивается в основном на базе робототехники. Однако мехатронный подход может быть реализован отнюдь не только в робототехнических системах. Остановимся на актуальном вопросе взаимосвязи предметных областей мехатроники и робототехники.
"Робототехника - это область науки и техники, ориентированная на создание роботов и робототехнических систем, предназначенных для автоматизации сложных технологических процессов и операций, в том числе выполняемых в недетерминированных условиях, для замены человека при выполнении тяжелых, утомительных и опасных работ".

Работа состоит из  1 файл

Лекция 5.doc

— 299.00 Кб (Скачать документ)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ  И НАУКИ, 
МОЛОДЁЖИ И СПОРТА УКРАИНЫ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

 

 

 

 

 

 

 

Контрольная работа

По курсу: «Мехатроника»

На тему: «Промышленные роботы. Основные определения и классификация.»

 

Выполнил:

Студент

гр. КПМОзск-10

 

Проверил:

Стадник Н.И.

 

 

 

Донецк 2013

Промышленные  роботы. Основные определения и классификация.

 

Общие сведения о промышленных роботах

Исторически мехатроника развивается в основном на базе робототехники. Однако мехатронный  подход может быть реализован отнюдь не только в робототехнических системах. Остановимся на актуальном вопросе взаимосвязи предметных областей мехатроники и робототехники.

"Робототехника - это область науки и техники, ориентированная на создание роботов и робототехнических систем, предназначенных для автоматизации сложных технологических процессов и операций, в том числе выполняемых в недетерминированных условиях, для замены человека при выполнении тяжелых, утомительных и опасных работ".

Таким образом, анализируя определения мехатроники и робототехники, можно сделать вывод о том, что мехатроника и робототехника различаются по классификационным признакам. Мехатроника изучает новый методологический подход к созданию модулей и машин с качественно новыми характеристиками. Роботы же представляют собой один из современных классов машин с компьютерным управлением движением.

Мехатронный подход охватывает все основные фазы жизненного цикла машины (проектирование, производство, эксплуатация и т.д.) и может быть применен в системах различного назначения, в том числе в манипуляционной технике и робототехнических системах. С другой стороны, проектирование и производство роботов базируется не только на мехатронных принципах и технологиях, но требует привлечения и других методологических подходов: методов технической кибернетики и бионики, САПР и CALS-технологий.

Достигнуть  современного уровня функционирования роботов без использования интеграционного мехатронного подхода, без применения систем интеллектуального управления практически невозможно, поэтому здесь предметные области мехатроники и робототехники пересекаются. Промышленные роботы можно рассматривать как типичные мехатронные объекты, хотя не всякий робот есть МС.

Известны  виды роботов (например, специализированные манипуляторы и автооператоры для обслуживания станков, шарнирно-балансирные манипуляторы и т.п.), которые имеют существенное прикладное значение и изучаются робототехникой, однако не базируются на мехатронных идеях. С другой стороны, мехатронный подход может быть реализован не только в робототехнических системах, но и при создании машин других видов, например металлорежущих станков, мобильных и транспортных средств, офисной и бытовой техники.

Один из основоположников мехатроники профессор Исии отмечает: «у робота, как у типичного представителя мехатронного устройства, три основных части: а) исполнительный орган, б) органы чувств (датчики), в) элементы (блоки) обработки информации». Он подчеркивает, что «...фундаментальными задачами робототехники являются развитие информационной сферы». И далее, «...прогресса в мехатронике нельзя добиться, делая упор лишь на достижения микроэлектроники». Необходим прогресс в разработке широкой гаммы периферийных устройств, а также новых конструктивных элементов, специально предназначенных для МС.

Робот − технический комплекс, предназначенный для выполнения различных движений и некоторых интеллектуальных функций человека и обладающий необходимыми для этого исполнительными устройствами, управляющими, информационными и вычислительными системами, предназначенными для решения вычислительно-логических задач.

Промышленный  робот (ПР) – стационарная или передвижная автоматическая машина, состоящая из:

  1. исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности;
  2. перепрограммируемого устройства программного управления для выполнения в производственных процессах двигательных и управляющих функций.

Манипулятор – управляемое устройство или машина, предназначенное для выполнения двигательных функций, аналогичных функциям руки человека по перемещению объектов в пространстве и оснащенное рабочим органом.

Исполнительное  устройство промышленного робота – устройство, выполняющее все двигательные функции ПР. Это может быть как механизм, перемещающий сам робот в пространстве, так и многозвенный манипулятор, переносящий объект манипулирования.

 

Функциональное  описание робототехнической системы

Рассмотрим основные элементы функциональной схемы системы  управления промышленным роботом (рис. 5.1).

Рисунок 5.1 .- Функциональная схема системы управления роботом

 

ПР состоит из следующих  систем:

1) Исполнительная (манипуляционная) система служит для целенаправленного воздействия на окружающую среду.

2) Информационно-измерительная (сенсорная) система служит для обеспечения робота информацией о состоянии внешней среды, результатах воздействия на неё манипуляционной системы и состоянии самого робота в соответствии с требованиями управляющей системы.

3) Управляющая система служит для выработки закона управления манипуляционной системы и общения с человеком.

4) Система связи служит для организации обмена информацией робота с человеком.

 

Поколения промышленных роботов.

Современные и перспективные  промышленные роботы отличаются друг от друга структурой, функциональными  возможностями и назначением. Поэтому  условно все роботы можно разделить на три "поколения":

  • программные роботы;
  • адаптивные роботы;
  • интеллектные (с элементами искусственного интеллекта) роботы.

Все они обладают перепрограммируемостью, хотя это свойство и реализуется по-разному.

В роботах  I поколения (программные роботы) перепрограммирование производится оператором, после чего робот своим исполнительным устройством однообразно выполняет движения по жесткой программе. Исполнительным устройством робота чаще всего является манипулятор, представляющий собой многозвенную конструкцию, аналогичную руке человека, оснащённую рабочим органом (рис). Для реализации движений в пространстве каждое звено манипулятора оснащается соответствующим приводом. Информационная система такого робота проста – применяются в основном датчики положения звеньев манипулятора в виде концевых выключателей. Роль оператора программного робота первого поколения сводится к его "обучению". Оператор вводит исходные данные о координатах объекта манипулирования и технологического оборудования, вводит программу движений манипулятора по его звеньям, контролирует достаточную точность позиционирования рабочего органа манипулятора. В последующем робот работает в автоматическом, жестко запрограммированном режиме.

Применение  роботов I поколения возможно только в технологическом процессе со строго организованной, заранее детерминированной (известной) и неизменной окружающей средой. Для высокопроизводительной работы таких роботизированных производственных участков необходимо применение вспомогательных технологических устройств и приспособлений (транспортные, загрузочные, ориентирующие устройства, накопители и т.п.), обеспечивающих организацию рабочей среды. Под организацией рабочей среды понимается прежде всего процесс придания деталям (объектам манипулирования), занимающим первоначально самое разнообразное положение, т.е. находящихся в навале, одного определенного положения, удовлетворяющего требованиям программного робота  и основного технологического оборудования.

Для робота II поколения (адаптивные роботы) человек формирует задание, т.е. основы программы его действий, однако робот имеет возможность в определённых пределах автоматически перепрограммироваться (адаптироваться) в ходе технологического процесса в зависимости от обстановки, которая на этапе формирования задания может быть определена недостаточно точно и в ходе техпроцесса подвержена изменениям. Расширение функциональных возможностей адаптивных роботов по сравнению с роботами предыдущего поколения достигается за счёт достаточно развитой информационной системы, предполагающей применение так называемых датчиков внутренней и внешней среды. Под датчиками внутренней среды понимаются датчики, регистрирующие различные физические параметры (положение, скорость, ускорение, силы, моменты, давление, ток, напряжение, и т.п.) исполнительных устройств робота, которыми могут быть манипулятор или манипуляторы, а также, возможно, и устройство передвижения робота, датчики внешней среды регистрируют параметры окружения адаптивного робота. Такими параметрами могут быть температура, освещенность и т.п., а также изображение расположенных в некотором пространстве объектов манипулирования, основного и вспомогательного оборудования. Значительный объём информации, поступающий от датчиков внутренней и внешней среды, перерабатывается управляющей системой, основу которой составляет достаточно мощная ЭВМ со сложным программным обеспечением. Реализация сформулированного человеком задания благодаря ЭВМ и информационной системе раскладывается на следующие стадии:

  • планирование программы действий;
  • решение конкретных прикладных задач;
  • выработка режима движения многозвенных исполнительных устройств;
  • распределение управляющих сигналов по приводам.

Область применения роботов II поколения существенно расширяется - это могут быть технологические процессы без строго организованной окружающей среды (объекты манипулирования поступают в зону работы робота без заранее известной ориентации), с изменяющейся номенклатурой изделий и т.д.

Роботы III поколения называют интегральными или интеллектными (с элементами искусственного интеллекта) роботами. Для робота III поколения задание на работу вводится человеком в более общей форме, чем для робота II поколения. Интеллектный робот обладает возможностью планировать свои действия в неопределённой и меняющейся обстановке для реализации поставленного человеком задания. Такой робот отличается более развитым очувствлением, микропроцессорной обработкой информации, богатым арсеналом логических операций, системой распознавания обстановки, и даже системой самопрограммирования.

Функционально, по внешним  результатам, этот робот действует аналогично человеку, который понял поставленную перед ним задачу, воспринял окружающую среду и знает, какие движения необходимо сделать для выполнения заданной работы в неизвестной заранее обстановке.

Область применения интеллектных роботов вследствие их широких функциональных возможностей просто необъятна.

Следует отметить, что  термин "поколение" не означает смену  одних поколений роботов другими. Каждое поколение роботов имеет самостоятельное значение и область рационального применения. Естественно, с развитием элементной базы они будут все более и более совершенными, надёжными и быстродействующими.

 


Информация о работе Промышленные роботы. Основные определения и классификация