Лекции по "Материаловедение"

Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 20:22, курс лекций

Описание

Материаловедение. Особенности атомно-кристаллического строения металлов.

Металлы, особенности атомно-кристаллического строения
Понятие об изотропии и анизотропии
Аллотропия или полиморфные превращения.
Магнитные превращения

Работа состоит из  1 файл

материаловедение.doc

— 1.69 Мб (Скачать документ)

Плоскости скольжения зерен произвольно  ориентированны в пространстве, поэтому  под влиянием внешних сил напряжения в плоскостях скольжения отдельных зерен будут различны. Деформация начинается в отдельных зернах, в плоскостях скольжения которых возникают максимальные касательные напряжения. Соседние зерна будут разворачиваться и постепенно вовлекаться в процесс деформации. Деформация приводит к изменению формы зерен: зерна получают форму, вытянутую в направлении наиболее интенсивного течения металла (поворачиваются осями наибольшей прочности вдоль направления деформации). Изменение структуры при деформации показано на рис. 8.1.


Рис. 8.1. Изменение структуры при деформации: а) до деформации; б) после обжатия на 35%; в) после обжатия на 90%. 

 

Металл приобретает волокнистое  строение. Волокна с вытянутыми вдоль  них неметаллическими включениями  являются причиной неодинаковости свойств  вдоль и поперек волокон. Одновременно с изменением формы зерен в процессе пластической деформации происходит изменение ориентировки в пространстве их кристаллической решетки.

Когда кристаллические решетки большинства  зерен получают одинаковую ориентировку, возникает текстура деформации. 

 

Влияние пластической деформации на структуру и свойства металла: наклеп 

 

Текстура деформации создает кристаллическую анизотропию, при которой наибольшая разница свойств проявляется для направлений, расположенных под углом 45o друг к другу. С увеличением степени деформации характеристики пластичности (относительное удлинение, относительное сужение) и вязкости (ударная вязкость) уменьшаются, а прочностные характеристики (предел упругости, предел текучести, предел прочности) и твердость увеличиваются (рис. 8.2). Также повышается электросопротивление, снижаются сопротивление коррозии, теплопроводность, магнитная проницаемость.

 

Рис.8.2. Влияние холодной пластической деформации на механические свойства металла 

 

Совокупность явлений, связанных  с изменением механических, физических и других свойств металлов в процессе пластической деформации называют деформационным упрочнением или наклепом.

Упрочнение при наклепе объясняется  возрастанием на несколько порядков плотности дислокаций:

Их свободное перемещение затрудняется взаимным влиянием, также торможением дислокаций в связи с измельчением блоков и зерен, искажениями решетки металлов, возникновением напряжений. 

 

Влияние нагрева на структуру  и свойства деформированного металла: возврат и рекристаллизация 

 

Деформированный металл находится  в неравновесном состоянии. Переход к равновесному состоянию связан с уменьшением искажений в кристаллической решетке, снятием напряжений, что определяется возможностью перемещения атомов.

При низких температурах подвижность атомов мала, поэтому состояние наклепа  может сохраняться неограниченно долго.

При повышении температуры металла  в процессе нагрева после пластической деформации диффузия атомов увеличивается  и начинают действовать процессы разупрочнения, приводящие металл в  более равновесное состояние  – возврат и рекристаллизация.

Возврат. Небольшой нагрев вызывает ускорение движения атомов, снижение плотности дислокаций, устранение внутренних напряжений и восстановление кристаллической решетки

Процесс частичного разупрочнения и восстановления свойств называется отдыхом (первая стадия возврата). Имеет место при температуре

..

Возврат уменьшает искажение кристаллической  решетки, но не влияет на размеры и  форму зерен и не препятствует образованию текстуры деформации.

Полигонизация – процесс деления зерен на части: фрагменты, полигоны в результате скольжения и переползания дислокаций.

При температурах возврата возможна группировка дислокаций одинаковых знаков в стенки, деление зерна  малоугловыми границами (рис. 8.3).


Рис. 8.3. Схема полигонизации: а – хаотическое расположение краевых дислокаций в деформированном металле; б – дислокационные стенки после полигонизации. 

 

В полигонизированном состоянии кристалл обладает меньшей энергией, поэтому  образование полигонов — процесс  энергетически выгодный.

Процесс протекает при небольших  степенях пластической деформации. В результате понижается прочность на (10…15) % и повышается пластичность (рис.8.4). Границы полигонов мигрируют в сторону большей объемной плотности дислокаций, присоединяя новые дислокации, благодаря чему углы разориентировки зерен увеличиваются (зерна аналогичны зернам, образующимся при рекристаллизации). Изменений в микроструктуре не наблюдается (рис.8.5 а). Температура начала полигонизации не является постоянной. Скорость процесса зависит от природы металла, содержания примесей, степени предшествующей деформации.


Рис. 8.4. Влияние нагрева деформированного металла на механические свойств 

 

 

Рис. 8.5. Изменение структуры деформированного металла при нагреве 

 

При нагреве до достаточно высоких  температур подвижность атомов возрастает и происходит рекристаллизация.

Рекристаллизация – процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.

Нагрев  металла до температур рекристаллизации сопровождается резким изменением микроструктуры и свойств. Нагрев приводит к резкому снижению прочности при одновременном возрастании пластичности. Также снижается электросопротивление и повышается теплопроводность.

1 стадия  – первичная рекристаллизация (обработки)  заключается в образовании центров  кристаллизации и росте новых равновесных зерен с неискаженной кристаллической решеткой. Новые зерна возникают у границ старых зерен и блоков, где решетка была наиболее искажена. Количество новых зерен постепенно увеличивается и в структуре не остается старых деформированных зерен.

Движущей  силой первичной рекристаллизации является энергия, аккумулированная в  наклепанном металле. Система стремится  перейти в устойчивое состояние  с неискаженной кристаллической  решеткой.

2 стадия – собирательная рекристаллизация  заключается в росте образовавшихся новых зерен.

Движущей  силой является поверхностная энергия  зерен. При мелких зернах поверхность  раздела большая, поэтому имеется  большой запас поверхностной  энергии. При укрупнении зерен общая  протяженность границ уменьшается, и система переходит в более равновесное состояние.

Температура начала рекристаллизации связана с  температурой плавления

,

для металлов

для твердых растворов 

для металлов высокой чистоты 

На  свойства металла большое влияние оказывает размер зерен, получившихся при рекристаллизации. В результате образования крупных зерен при нагреве до температуры t1 начинает понижаться прочность и, особенно значительно, пластичность металла.

Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации (рис. 8.6).


Рис. 8.6. Влияние предварительной степени  деформации металла на величину зерна  после рекристаллизации 

 

С повышением температуры происходит укрупнение зерен, с увеличением  времени выдержки зерна также  укрупняются. Наиболее крупные зерна  образуются после незначительной предварительной  деформации 3…10 %. Такую деформацию называют критической. И такая деформация нежелательна перед проведением рекристаллизационного отжига.

Практически рекристаллизационный отжиг проводят дпя малоуглеродистых сталей при  температуре 600…700oС, для латуней и бронз – 560…700oС, для алюминевых сплавов – 350…450oС, для титановых сплавов – 550…750oС.

 

 

Лекция 9 

Железоуглеродистые сплавы. Диаграмма  состояния железо – углерод. 

 

  1. Структуры железоуглеродистых сплавов
  2. Компоненты и фазы железоуглеродистых сплавов
  3. Процессы при структурообразовании железоуглеродистых сплавов
  4. Структуры железоуглеродистых сплавов

 

 

Структуры железоуглеродистых сплавов 

 

Железоуглеродистые сплавы – стали  и чугуны – важнейшие металлические  сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых более чем в десять раз.

Диаграмма состояния железо – углерод дает основное представление о строении железоуглеродистых сплавов – сталей и чугунов.

Начало изучению диаграммы железо – углерод положил Чернов Д.К. в 1868 году. Чернов впервые указал на существование в стали критических  точек и на зависимость их положения  от содержания углерода.

Диаграмма железо – углерод должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит – . Каждое устойчивое химическое соединение можно рассматривать как компонент, а диаграмму – по частям. Так как на практике применяют металлические сплавы с содержанием углерода до , то рассматриваем часть диаграммы состояния от железа до химического соединения цементита, содержащего углерода.

Диаграмма состояния железо – цементит представлена на рис. 9.1.

 

Рис. 9.1. Диаграмма состояния железо - цементит 

 

Компоненты и фазы железоуглеродистых сплавов 

 

Компонентами железоуглеродистых сплавов являются железо, углерод  и цементит.

1. Железо – переходный металл серебристо-светлого цвета. Имеет высокую температуру плавления – 1539o С 5o С.

В твердом состоянии железо может  находиться в двух модификациях. Полиморфные  превращения происходят при температурах 911o С и 1392o С. При температуре ниже 911o С существует с объемно-центрированной кубической решеткой. В интервале температур 911…1392o С устойчивым является с гранецентрированной кубической решеткой. Выше 1392o С железо имеет объемно-центрированную кубическую решетку и называется или высокотемпературное . Высокотемпературная модификация не представляет собой новой аллотропической формы. Критическую температуру 911oС превращения обозначают точкой , а температуру 1392o С превращения - точкой А4.

При температуре ниже 768o С железо ферромагнитно, а выше – парамагнитно. Точка Кюри железа 768o С обозначается А2.

Железо технической чистоты  обладает невысокой твердостью (80 НВ) и прочностью (предел прочности –  , предел текучести – ) и высокими характеристиками пластичности (относительное удлинение – , а относительное сужение – ). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна.

Железо характеризуется высоким  модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов.

Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и  водородом – растворы внедрения.

2. Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500 0С, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления – 5000 0С).

В сплавах железа с углеродом  углерод находится в состоянии  твердого раствора с железом и  в виде химического соединения –  цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах).

3. Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода.

Аллотропических превращений не испытывает. Кристаллическая решетка цементита  состоит из ряда октаэдров, оси которых наклонены друг к другу.

Температура плавления цементита  точно не установлена (1250, 1550o С). При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 217o С.

Цементит  имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность. Такие свойства являются следствием сложного строения кристаллической решетки.

Цементит  способен образовывать твердые растворы замещения. Атомы углерода могут  замещаться атомами неметаллов: азотом, кислородом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Цементит  – соединение неустойчивое и при  определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит.

1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

2. Феррит (Ф) (C) – твердый раствор внедрения углерода в -железо.

Феррит  имеет переменную предельную растворимость  углерода: минимальную – 0,006 % при комнатной температуре (точка Q), максимальную – 0,02 % при температуре 727o С ( точка P). Углерод располагается в дефектах решетки.

При температуре выше 1392o С существует высокотемпературный феррит ( ) ( (C), с предельной растворимостью углерода 0,1 % при температуре 1499o С (точка J)

Свойства  феррита близки к свойствам железа. Он мягок (твердость – 130 НВ, предел прочности – ) и пластичен (относительное удлинение – ), магнитен до 768o С.

Информация о работе Лекции по "Материаловедение"