Анализ путей снижения затрат на инструмент в машиностроительном производстве

Автор работы: Пользователь скрыл имя, 21 Ноября 2012 в 23:57, курсовая работа

Описание

Целью данной курсовой работы является разработка методов снижения затрат машиностроительного предприятия.
Для реализации поставленной цели были сформулированы и решены следующие задачи:
1. Анализ методов управления затратами на машиностроительном предприятии и источников снижения затрат.
2. Определение критерия оценки целесообразности реструктуризации инструментального производства машиностроительного предприятия.

Содержание

Введение…………………………………………………………………………...3
1. Технологическая часть………………………………………………………...5
1.1.Резцы……………………………………………………………………...7
1.2.Сверла…………………………………………………………………...14
1.3.Зенкеры……………………………………………………………….…19
1.4.Фрезы………………………………………………...………………….23
1.5.Метчики…………………………………………………………………29
2. Основные программы сокращения затрат на предприятиях машиностроения.………………………………………………………………..313. Перспективные технологии для изготовления металлорежущего инструмента ……………………………………………………………………..34
3.1 .Электрохимия……………………………………………………...…34
3.2. Дуговая наплавка…………………………………………………..…34
3.3. Электроискровое легирование………………………………….…...35
3.4. Плазменное напыление…………………………………………...….35
3.5. Термохимическая обработка…………………………………..….....36
3.6. Детонационное напыление…………………………………….…….37
3.7. Ионно-плазменная технология………………………………………38
3.8. Классика……………………………………………………….….…..38
4. Нанесение износостойких покрытий как один из основных методов повышения износостойкости металлорежущих инструментов…………........39
5. Покрытия для режущего инструмента………………………………………42
5.1. Типы износостойких покрытий………………………………….….42
5.2. Механизмы износа инструмента…………………………………….43
6. Применение полимеров в машиностроении……………………………...…53
Заключение………………………………………………………….……………60
Список используемых источников

Работа состоит из  1 файл

Курсовая работа.doc

— 451.00 Кб (Скачать документ)

Очень часто  первоначальный этап «вхождения» режущей  кромки в обрабатываемый металл (приработка) заканчивается частичным или  полным разрушением твердого износостойкого покрытия, и внешнее твердосмазочное покрытие обеспечивает начальную приработку для последующего высокоскоростного резания. Кроме того, твердосмазочное покрытие, сохраняясь на периферии контакта, обеспечивает эффективное удаление стружки из зоны резания. Следует отметить, что тонкие твердосмазочные «мягкие» покрытия, обладающие очень низким коэффициентом трения, могут использоваться и самостоятельно для оптимизации режима приработки инструмента. Твердосмазочные покрытия

серии STITCHCOAT™  толщиной менее 0,5 мкм в ряде случаев обеспечивают и очень хорошую финишную обработку. Понятно, что под определение «износостойкие» эти покрытия не подходят. Однако они могут с успехом обеспечивать эффективное удаление стружки из зоны резания, выполняя на определенном этапе резания одну из функций СОЖ. 

К двухслойным  покрытиям такого типа принадлежит  покрытие, у которого внешний слой состоит из оксидов WO3, V2O5 или TiO2, обладающих улучшенными трибологическими свойствами при более высоких температурах. Фирма Balzers разработала покрытие TiAlN/WC*C, основным преимуществом которого также является очень низкая скорость износа в режиме приработки, что несомненно приводит к увеличению срока эксплуатации инструмента. Одним из самых перспективных направлений в создании покрытий подобного типа является нанесение наноструктурированных покрытий WC, имеющих превосходные трибологические характеристики.

 

 

 

 

 

 

 

 

 

 

 

 

  1. Применение полимеров в машиностроении 

Полимер — высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов), состоит из большого числа повторяющихся одинаковых или различных по строению атомных группировок — составных звеньев, соединенных между собой химическими или координационными связями в длинные линейные (например, целлюлоза) или разветвленные (например, амилопектин) цепи, а также пространственные трёхмерные структуры.

Ничего удивительного  в том, что машиностроение - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. машиностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37—38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали применять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.

При этом уместно  отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров стали изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпусных деталей машин и механизмов, несущих значительные нагрузки. Ниже будет подробнее рассказано о применении полимеров в автомобильной и авиационной промышленности, здесь же упомянем лишь один примечательный факт: несколько лет назад по Москве ходил цельнопластмассовый трамвай. А вот другой факт: четверть всех мелких судов - катеров, шлюпок, лодок - теперь строится из пластических масс.

До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. Рубеж прочностных свойств полимерных материалов удалось преодолеть переходом к композиционным материалам, главным образом стекло и углепластикам. Так что теперь выражение “пластмасса прочнее стали” звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая  именно  для  полимеров,  где  четче  всего  проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки.

То же самое  можно сказать и о машиностроении. Почти три четверти внутренней отделки  салонов легковых автомобилей, автобусов, самолетов, речных и морских судов  и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок, тканей, искусственной кожи. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход - сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками.

Широко применяются  полимерные материалы и в такой  отрасли народного хозяйства, как  приборостроение. Здесь получен  самый высокий экономический эффект в среднем в 1,5-2,0 раза выше, чем в других отраслях машиностроения. Объясняется это, в частности тем что большая часть полимеров перерабатывается в приборостроении самыми прогрессивными способами что повышает уровень полезного использования (и безотходность отходность) термопластов, увеличивает коэффициент замены дорогостоящих материалов. Наряду с этим значительно снижаются затраты  живого труда. Простейшим и весьма убедительным примером может служить изготовление печатных схем: процесс, не мыслимый без полимерных материалов, а с ними и полностью автоматизированный.

Есть и другие подотрасли, где использование полимерных материалов обеспечивает и экономию материальных и энергетических ресурсов, и рост производительности труда. Почти  полную автоматизацию обеспечило применение полимеров в производстве тормозных систем для транспорта. Неспроста практически все функциональные детали тормозных систем для автомобилей и около 45% для железнодорожного подвижного состава делаются из синтетических пресс-материалов.    Около   50%   деталей   вращения   и   зубчатых   колес изготовляется из прочных конструкционных полимеров. В последнем случае можно отметить две различных тенденции. С одной стороны, все чаще появляются сообщения об изготовлении зубчатых колес для тракторов из капрона. Обрывки отслуживших свое рыболовных сетей, старые чулки и путанку капроновых волокон переплавляют и формуют в шестерни. Эти шестерни могут работать почти без износа в контакте со стальными, вдобавок такая система не нуждается в смазке и почти бесшумна. Другая тенденция - полная замена металлических деталей в редукторах на детали из углепластиков. У них тоже отмечается резкое снижение механических потерь, долговременность срока службы.

Еще одна область  применения полимерных материалов в машиностроении, достойная отдельного упоминания, - изготовление металлорежущего инструмента. По мере расширения использования прочных сталей и сплавов все более жесткие требования предъявляются к обрабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например из рода фианитов), нитриды, карбиды, уже сегодня демонстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алмазы, да к тому же им свойствен “королевский порок” - они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпускается с применением синтетических смол.

Таковы лишь некоторые примеры и основные тенденции внедрения полимерных материалов в подотрасли машиностроения. Самое же первое место по темпам роста применения пластических масс среди других подотраслей занимает сейчас автомобильная промышленность. Десять лет назад в автомашинах использовали от 7 до 12 видов различных пластиков, к концу 70-х годов это число перешагнуло за 30. С точки зрения химической структуры, как и следовало ожидать, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Пока еще немного уступают им, но активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры. Перечень деталей  автомобиля,  которые  в  тех  или  иных  моделях  в  наши  дни изготовляют из полимеров, занял бы не одну страницу. Кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот. Более того, несколько разных фирм за рубежом уже объявили о начале производства цельнопластмассовых автомобилей. Наиболее характерные тенденции в применении пластмасс для автомобилестроения, в общем, те же, что и в других подотраслях. Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов. Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижается общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации. В-третьих, выполненные как единое целое, блоки пластмассовых деталей существенно упрощают сборку и позволяют экономить живой труд.

Кстати, те же преимущества стимулируют и широкое применение полимерных материалов в авиационной  промышленности. Например, замена алюминиевого сплава графитопластиком при изготовлении предкрылка крыла самолета позволяет  сократить количество деталей с 47 до 14, крепежа - с 1464 до 8 болтов, снизить вес на 22%, стоимость - на 25%. При этом запас прочности изделия составляет 178%. Лопасти вертолета, лопатки вентиляторов реактивных двигателей рекомендуют изготовлять из поликонденсационных смол, наполненных алюмосиликатными волокнами, что позволяет снизить вес самолета при сохранении прочности и надежности. По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертолетов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии. Жесткие требования были поставлены перед конструкторами первого англо-французского сверхзвукового пассажирского самолета “Конкорд”. Было рассчитано, что от трения об атмосферу внешняя поверхность самолета будет разогреваться до 120-150° С, и в то же время требовалось, чтобы она не поддавалась эрозии в течение по меньшей мере 20000 часов. Решение проблемы было найдено с помощью поверхностного покрытия защиты самолета тончайшей пленкой фторопласта.

Из полимеров  стали изготавливать все больше относительно мелких, но конструктивно  сложных и ответственных деталей  машин и механизмов, и в то же время все чаще полимеры стали  применяться в изготовлении крупногабаритных корпусных деталей машин и  механизмов, несущих значительные нагрузки, работающих в условиях высокой влажности, эксплуатирующиеся в агрессивной среде. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется из декоративных пластиков, синтетических пленок. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию.

Направляющие  цепей: благодаря высокой износостойкости и антифрикционным свойствам направляющие из полиэтилена  широко применяются в машиностроении (также в пищевой и упаковочной промышленности, в производстве напитков). Стоит отметить, что минимальное сопротивление скольжению позволяет цепи легко скользить по направляющим.

Полиэтилен  часто используют при изготовлении зубчатых колес, благодаря его превосходной износо- и- ударостойкости, а также  звукоизоляционным свойствам.

Детали из РЕ, РЕ-НМW благодаря  высокой шумоизоляции и ударостойкости подходят для защиты углов и поверхности транспортёров, каркасов. Там, где применяются повышенные требования к защите, хорошему скольжению или гибкости используется материал РЕ-НМW.

PE 500, PE 1000 эффективен  для облицовки внешних поверхностей  глиссеров (катеров, яхт), саней, лыж для самолётов малой авиации, поскольку обеспечивает минимальное трение с поверхностью воды и идеальное скольжение по снегу, льду. При этом эластичность материала и его устойчивость к низким температурам даёт возможность использовать изделие круглый год. Одновременно PE 500 и РЕ 1000 защищает конструкцию от воздействия агрессивных сред (солей, кислот, щелочей).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Заключение

В данном курсовом проекте мы рассмотрели основные виды деталей и инструментов, на производстве которых специализируется большинство машиностроительных предприятий страны, их строение и основные характеристики. Поскольку машиностроение – одна из наиболее значимых отраслей промышленности на данном этапе развития экономики, а производство является достаточно затратным, проблема снижения затрат является особо актуальной.  И в связи с этим нашей целью было разработать пути и методы снижения затрат на инструмент в машиностроительном производстве.

Сегодня существует множество различных технологий для повышения износостойкости металлорежущего инструмента. В работе мы привели только небольшую часть из всего спектра наработанных человечеством за его индустриальную историю технологий. Так например:

Информация о работе Анализ путей снижения затрат на инструмент в машиностроительном производстве