Автор работы: Пользователь скрыл имя, 07 Октября 2011 в 13:30, реферат
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана.
ВВЕДЕНИЕ.
ПОНЯТИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ. ОСНОВНЫЕ МЕТОДЫ ОБНАРУЖЕНИЯ ИИ.
ОСНОВЫ РАДИОАКТИВНОЙ БЕЗОПАСНОСТИ. НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ (НРБ-99).
КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ В РАЗЛИЧНЫХ СИТУАЦИЯХ. ТРЕБОВАНИЯ К КОНТРОЛЮ ЗА ВЫПОЛНЕНИЕМ НОРМ.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
Реферат
Тема:
Ионизирующие излучения и защита от них.
Нормы радиационной безопасности в мирное время
(НРБ-99),
в военное время
и при ЧС.
Бредихина Е.Ю.
Пушкарёв
М.И.
Москва
2003
Содержание:
ВВЕДЕНИЕ.
ПОНЯТИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ. ОСНОВНЫЕ МЕТОДЫ ОБНАРУЖЕНИЯ ИИ.
ОСНОВЫ РАДИОАКТИВНОЙ БЕЗОПАСНОСТИ. НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ (НРБ-99).
КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ В РАЗЛИЧНЫХ СИТУАЦИЯХ. ТРЕБОВАНИЯ К КОНТРОЛЮ ЗА ВЫПОЛНЕНИЕМ НОРМ.
СПИСОК
ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
Введение.
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана.
Нет
необходимости говорить о том
положительном, что внесло в нашу
жизнь проникновение в
Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.
Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами органолептически: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.
Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6, т.е. Р > 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.
Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.
Таким
образом, источниками ионизирующего
излучения являются
Понятие
ионизирующего излучения.
Основные методы обнаружения
ИИ.
Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ЯВ. Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли.
Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Вообще к ИИ относят: рентгеновское и g-излучения; излучения, состоящие из потока заряженных (a+, b±, протонов р+, тяжёлые ядра отдачи) и незаряженных частиц - p, m, k - мезонов, мюонов и др. частиц.
При
авариях реакторов образуются a
Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (gв воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.
Бета- частицы (электроны b- и позитроны b+ ) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.
Альфа – частицы (ядра гелия) a+ краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.
Заметим, что ионизирующая способность альфа и бета – частиц будет во многом зависеть от энергии, с которой они покидают «материнское» («дочернее») ядро. Проходя через среду (биологическую ткань) ИИ ионизируют ее, что приводит к физико-химическим или биологическим изменениям свойств среды(ткани). При ионизации организма нарушаются обменные процессы, нормальное функционирование нервной, эндокринной, имунной, дыхательной, сердечно-сосудистой и др. систем, в результате чего люди (животные) заболевают. Элементы технических устройств, особенно радиоэлектронной аппаратуры, при ионизации теряют или изменяют свои свойства и параметры, а при сильном облучении могут выйти из строя. Короче говоря, все живое и «неживое» не терпит излишнего облучения.
Последствия
облучения для людей могут
быть самыми различными. Они во многом
определяются величиной дозы облучения
и временем её накопления. Возможные
последствия облучения людей
при длительном хроническом облучении,
зависимость эффектов от дозы однократного
облучения приведены на рис. 1.
Таблица 1.
Последствия
облучения людей.
Радиационные эффекты облучения
| Телесные
(соматические). Воздействуют на облучаемого. Имеют дозовый порог. |
Вероятностные
телесные (соматические-стохастические).
Условно не имеют дозового порога. |
Гинетические.
Условно не имеют дозового порога. |
| Острая лучевая болезнь | Сокращение продолжительности жизни. | Доминантные генные мутации. |
| Хроническая лучевая болезнь. | Лейкозы (скрытый период 7-12 лет). | Рецессивные генные мутации. |
| Локальные лучевые повреждения. | Опухоли разных органов (скрытый период до 25 лет и более). | Хромосомные абберации. |
Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать. На этом основаны различные методы обнаружения ИИ.
К основным относятся:
-ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствме – изменение ее электропроводности;
-сцинтилляционный,
заключающийся в том, что в
некоторых веществах под
-химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем;
-фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц.
-метод,
основанный на проводимости
Основы
радиоактивной безопасности.
Нормы радиационной
безопасности (НРБ-99).
Под радиационной безопасностью понимается состояние защищённости настоящего и будущего поколения людей, материальных средств и окружающей среды от вредного воздействия ИИ.
Радиационная
безопасность регламентируется помимо
Закона «О радиационной Безопасности»
- НРБ-99.
Таблица 2.
Зависимость
эффектов от дозы однократного[1] (
| Доза | Эффект | |
| Грей | Рад | |
| 50 | 5000 | Пороговая доза поражения центральной нервной системы («электронная смерть») |
| 6,0 | 600 | Минимальная абсолютно-смертельная доза |
| 4,0 | 400 | Средне-смертельная доза (доза 50% выживания) |
| 1,5 | 150 | Доза возникновения первичной лучевой реакции (в зависимости от дозы облучения различают четыре степени острой лучевой болезни: 100-200 рад – 1ст., 200-400 рад – 2 ст., 400-600 рад – 3 ст., свыше 600 рад – 4ст.) |
| 1,0 | 100 | Порог клинических эффектов |
| 0,1 | 10 | Уровень удвоения генных мутаций |
Основные положения НРБ-99 сводятся к следующим.
1. Требования НРБ-99 распространяются на следующие виды воздействия ИИ на человека: